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1. Introduction

Supersymmetric supergravity solutions play an important role in developing our under-

standing of holographic dualities. Such solutions provide valuable examples where one can

carry out detailed computations and, using non-renormalization properties, make quanti-

tative tests of gravity/gauge dualities at and away from conformal fixed points. Given the

precise holographic dictionary available in such cases, one may also understand in detail

how the spacetime is reconstructed from gauge theory data. One would hope to take from

these examples generally applicable methods and principles, along with insight into the

inner workings of holography.

Supergravity solutions that asymptote to AdS5 × S5 describe either a deformation of

N = 4 SYM or the theory in a non-trivial state. The most supersymmetric non-trivial

vacua of N = 4 SYM theory preserve 16 supersymmetries. In this context it is interesting

to consider the SYM theory on both Minkowski spacetime R(1,3), in which case we have

N = 4 on the Coulomb branch, and the theory on R × S3. These two cases are equivalent

in the conformal vacuum since the two backgrounds are mapped to each other by a Weyl

transformation but differ on a generic half supersymmetric state (which spontaneously

breaks the conformal invariance of the N = 4 SYM theory). Of course, the two theories

are still related in the decompactification limit of S3.

Using standard D-brane physics, one expects that the holographic dual of N = 4 SYM

on the Coulomb branch is the near-horizon limit of multi-center D3 brane solutions [1].

The Coulomb branch may be parametrized by the vevs of chiral primary operators and the

gravity/gauge theory duality together with non-renormalization theorems imply that the

vevs computed at weak coupling are non-renormalized and must therefore also be repro-

duced by the holographic computation. In [2], building on [3, 4], we indeed succeeded in

extracting these vevs from a generic multi-center solution, showing exact agreement with

field theory. This provides a highly non-trivial test of the correspondence away from the

conformal point – an infinite number of vevs was quantitatively matched – and also illus-

trates the maturity of holographic methods as it shows that one can go beyond qualitative

matching, performing precise quantitative computations.

Supergravity solutions corresponding to N = 4 SYM on R × S3 were recently con-

structed in [5]. The solutions of [5] preserve an R × SO(4)× SO(4) bosonic symmetry and

16 supersymmetries. These “bubbling solutions” are uniquely determined by a coloring of

the 2-plane into black and white regions. Based on earlier work relating 1/2 BPS states to

free fermions [6, 7], this distribution was argued to map to the phase space distribution of

free fermions and supporting evidence was provided in [8 – 11]; see also [12 – 17].

It is often stated in the literature that the gauge theory dual of the bubbling solution

is the matrix model associated with free fermions. One of the aims of this work is to
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understand to which extent this assertion is valid by applying standard AdS/CFT methods.

That is, we will address the question of whether the matrix model captures the entire

vacuum structure. In the AdS/CFT correspondence the asymptotics of the supergravity

solution encode QFT data. In particular the vacuum structure of the dual QFT can be

extracted from the near boundary asymptotics of the solution. In the first part of this paper

we will use holographic renormalization [18] and KK holography [4] in order to extract the

vevs from the solutions of [5]. Any proposal for the field theory dual must reproduce these

results.1

Let us now discuss the QFT side. By the operator-state correspondence, all 1/2 BPS

states of N = 4 SYM can be obtained by acting with 1/2 BPS operators on the conformal

vacuum. The operators constructed from the 6 scalars Xm of N = 4 SYM lie in the

(0, l, 0) representation of the SU(4) R-symmetry (see, for example, the review [19]). Up to

a U(3) ⊂ SU(4) rotation, every such operator can be represented holomorphically using a

single complex combination of the scalars Z = X1 + iX2. Thus gauge invariant operators

built from these scalars preserve an SO(4) part of the SU(4) R-symmetry and have a

definite SO(2) charge j under rotations in the X1−X2 plane. A convenient basis for these

operators is the Schur polynomial basis [6] and an arbitrary half BPS state |Φ〉 preserving

SO(4) R symmetry can be written as a superposition of states

|Φ〉 =
∑

R

aRχR(Z)|Ω〉 ≡ OΦ|Ω〉 (1.1)

for suitable complex coefficients aR, where χR(Z) is the Schur polynomial associated with

the2 U(N) representation R and |Ω〉 is the conformal vacuum. The representation R may

be labeled by a Young tableau and the associated Schur polynomial χR(Z) has degree equal

to the number of boxes n and in general involves both single and multi-trace contributions.

Thus the operator OΦ is equal to a sum of terms each of which has dimension equal to

charge, ∆ = j = n, for any n > 1. It follows that in order to specify the theory we need to

supply the coefficients aR and any gravitational dual should encode these coefficients.

When the field theory is formulated on R×S3 one may reduce over the S3 to obtain a

one-dimensional model involving an infinite number of fields (KK modes). Given the large

amount of supersymmetry, however, one might anticipate that the vacuum structure, i.e.

the coefficients aR in (1.1), may be encoded, at least to leading order in the large N limit,

in the truncation of the S3 reduction to only the s-mode of the complex scalar Z. We

will take this as a working assumption in this paper. It would be interesting to investigate

the validity of this assertion in general. We should emphasize that one should be very

cautious about using properties of this matrix model which are subleading in N (to infer

properties of the dual spacetimes etc.) since these are likely to be different from the true

1/N corrections of N = 4 SYM on R × S3.

1Here we assume that the 16 supercharges protect the vevs from acquiring quantum corrections, as in

the case of N = 4 SYM on R
(1,3).

2We are really interested in SU(N) gauge theory but the difference between U(N) and SU(N) is sub-

leading in the large N limit.
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Standard arguments map the matrix model to free fermions, whose phase space dis-

tribution is meant to correspond to the coloring of the 2-plane that determines the LLM

solution. In the fermion picture, we have N free fermions with the ground state being the

completely filled Dirac sea. This state corresponds to AdS5 ×S5. Excited states are in one

to one correspondence with the Schur polynomials, the excitation numbers being directly

determined from the the length of the rows of the associated Young tableaux. A generic

excited state in the free fermion picture is then in direct correspondence with the 1/2 BPS

state (1.1) of N = 4 SYM. The crucial question is then: does a phase space distribution for

the fermions uniquely determine the state |Φ〉? We show that this is not the case, i.e. the

phase space distribution does not determine all coefficients aR, but it does determine the

state enough so that the vevs of all (single trace) chiral primaries in this state are uniquely

determined! These are precisely the vevs encoded in the asymptotics of the supergravity

solution.

The results of the holographic computation show that the LLM solutions (generically)

encode vevs of all SO(4) singlet operators; such operators can be labeled by their SO(2)

charge j. So to check the correspondence one should compute these vevs in the field theory.

Here we face the first obstacle. While maximally charged operators (those whose SO(2)

charge is equal in magnitude to the dimension) involve only the Z field and so can be

implemented in the matrix model [10], all other operators involve all six scalars and thus

appear to involve fields not included in the matrix model.

To see how one can deal with this issue, recall that the 1-point function of an operator

O in the state |Φ〉 is equivalent to the 3-point function in the conformal vacuum between

O, the operator that creates |Φ〉 from |Ω〉 and its conjugate,

〈O〉Φ = 〈Ω|O†
ΦOOΦ|Ω〉. (1.2)

Suppose this correlator is computed in free field theory. Since OΦ is constructed only

from Z the 3-point function receives contributions only from part of O that contains Z.

Thus for the free field computation of the 1-point functions in (1.2) one may set to zero

all fields but Z (and Z̄) in the chiral primary operators. We emphasize, however, that

this truncation would in general give incorrect answers if used for different computations,

e.g. two point functions. If the free field computation were to be renormalized, then fields

apart from Z would of course contribute in loops. However, three-point functions of single

trace chiral primary operators of N = 4 SYM are known not to renormalize [20] and

it is believed that three point functions of protected multi-trace operators are similarly

non-renormalized [21]. We indeed find that the vevs computed using free field results for

multi trace operators do agree with those extracted holographically, thus confirming the

expectation of non-renormalization.

The truncated operators can therefore be implemented in the matrix model. We do this

explicitly for all operators up to dimension four (whose vevs we also extract from the gravity

solutions). In particular, we show that each of these operators can be expressed as linear

combinations of bilinears of fermion creation and annihilation operators. The coefficients

in the linear combinations are fixed by demanding that the operators have zero expectation

values at the conformal vacuum, 3-point functions with single trace operators are correctly
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reproduced, and the vev of the operators have the correct limit in the decompactification

limit of the S3. In this limit the phase space distribution maps to the distribution of

eigenvalues of the scalars in the Coulomb branch of N = 4 SYM. Having implemented the

operators in the matrix model it is then straightforward to compute their vevs in a general

state |Φ〉 and we find exact agreement with the holographic computations!

This paper is organized as follows. In the next section we summarize how to extract

holographic data from asymptotically AdS5 × S5 solutions. The resulting expressions for

the holographic vevs in terms of supergravity field asymptotics are applicable not just to

the bubbling solutions of interest in this paper, but to more general 1/4 and 1/8 BPS

bubbling solutions. In section 3 we review the LLM solutions and extract the vevs of all

maximally charged operators and of all operators with any charge up to dimension four.

In section 4 we discuss the dual description of the bubbling solutions. We show what

information about the state is captured by the distribution and hence the gravity solution;

we reproduce the holographic vevs in section 5 and we explicitly match certain specific

symmetric distributions with 1/2 BPS states in section 6. In section 7 we discuss our

results.

Appendices A and B review relevant properties of spherical harmonics and of scalar

chiral primary operators in N = 4 SYM whilst appendix C discusses the large N scaling

of three point functions. Appendix D is rather tangential to the focus of the paper: we

discuss the Killing spinors for the LLM supergravity solutions. These were discussed in [5]

but only half of them were correctly identified and they are missing local phase factors

which (drop out of the fermion bilinears used to construct the supergravity solution but

which) are needed to solve the Killing spinor equations.

2. Extracting holographic data

In this section we will give a self-contained summary of the method of Kaluza-Klein holog-

raphy, developed in [4], which allows the computation of all 1-point functions from any

asymptotically AdSp × Xq supergravity solution.

The basic steps in this method are the following. First one expresses the deviation of

the supergravity solution from AdSp×Xq in terms of the complete basis of harmonics of the

compact manifold Xq; let the expansion coefficients be denoted collectively as ψI . Now one

forms gauge invariant combinations of these fluctuations, ψ̂I , that satisfy field equations

which can be expanded perturbatively in the number of fluctuation fields. Schematically

these field equations may be written

LI ψ̂I = LIJKψ̂J ψ̂K + LIJKLψ̂J ψ̂Kψ̂L + · · · , (2.1)

where LI1···In is an appropriate differential operator. Since LI1···In involves derivatives,

the set of field equations cannot generically be integrated into an action. However, one can

always define p-dimensional fields ΨI by a non-linear Kaluza-Klein reduction map of the

fields ψI :

ΨI = ψI + KI
JKψJ ψK + · · · , (2.2)
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where KI
JK contains appropriate derivatives. The reduction map is such that the fields ΨI

do satisfy field equations which can be integrated into an action. Given this p-dimensional

action, it is then straightforward to obtain the one point functions of operators in terms

of the asymptotics of the fields ΨI , using the well-developed techniques of holographic

renormalization [22 – 29]; for a review, see [18]. We will now give the details of each step

in the case of interest.

Let us consider any asymptotically AdS5×S5 solution of type IIB, which involves only

the metric and 5-form field strength. (It is straightforward to include all other fields of

type IIB, but unnecessary for our application here to the LLM bubbling solutions.) The

IIB SUGRA field equations3 for the metric and 5-form field strength are given by:

RMN =
1

6
FMPQRSFN

PQRS, F = ∗F. (2.3)

These equations admit an AdS5 × S5 solution

ds2
o =

dz2

z2
+

1

z2
dx2

|| + dθ2 + sin2 θdΩ2
3 + cos2 θdφ2 (2.4)

F o
µνρστ = ǫµνρστ , F o

abcde = ǫabcde.

where (µ, ν) and (a, b) denote AdS5 and S5 indices respectively; M,N, . . . are 10d indices

whilst x denotes AdS coordinates and y denotes S5 coordinates. We will consider here

solutions that are deformations of AdS5 × S5 such that

gMN = go
MN + hMN , (2.5)

FMNPQR = F o
MNPQR + fMNPQR.

These fluctuations can be expanded in spherical harmonics as:

hµν(x, y) =
∑

hI1
µν(x)Y I1(y);

hµa(x, y) =
∑

(BI5
(v)µ(x)Y I5

a (y) + BI1
(s)µ(x)DaY

I1(y));

h(ab)(x, y) =
∑

(φ̂I14
(t) (x)Y I14

(ab)(y) + φI5
(v)(x)D(aY

I5
b) (y) + φI1

(s)(x)D(aDb)Y
I1(y));

ha
a(x, y) =

∑

πI1(x)Y I1(y), (2.6)

and

fµνρστ (x, y) =
∑

5D[µbI1
νρστ ](x)Y I1(y); (2.7)

faµνρσ(x, y) =
∑

(bI1
µνρσ(x)DaY

I1(y) + 4D[µbI5
νρσ](x)Y I5

a (y));

fabµνρ(x, y) =
∑

(3D[µbI10
νρ](x)Y I10

[ab] (y) − 2bI5
µνρ(x)D[aY

I5
b] (y));

fabcµν(x, y) =
∑

(2D[µbI5
ν](x)ǫabc

deDdY
I5
e (y) + 3bI10

µν (x)D[aY
I10
bc] (y));

fabcdµ(x, y) =
∑

(DµbI1
(s)(x)ǫabcd

eDeY
I1(y) + (ΛI5 − 4)bI5

µ (x)ǫabcd
eY I5

e (y))

fabcde(x, y) =
∑

bI1
(s)(x)ΛI1ǫabcdeY

I1(y);

3The field strength differs by a factor of 4 from the conventions in [30].
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Numerical constants in these expressions are inserted so as to match with the conventions

of [31]. Parentheses denote a symmetric traceless combination (i.e. A(ab) = 1/2(Aab +

Aba) − 1/5gabA
a
a). Y I1, Y I5

a , Y I14
(ab) and Y I10

[ab] denote scalar, vector and tensor harmonics

whilst ΛI1 and ΛI5 are the eigenvalues of the scalar and vector harmonics under (minus)

the d’Alembertian. The subscripts t, v and s denote whether the field is associated with

tensor, vector or scalar harmonics respectively, whilst the superscript of the harmonic label

In derives from the number of components n of the harmonic. Relevant properties of the

spherical harmonics are summarized in appendix A.

In what follows it will be useful to label perturbations by both the degree k of the

associated harmonic and by the degeneracy of such harmonics. For example, πkI will

denote the fluctuations associated with degree k scalar harmonics with I labeling the

SO(6) quantum numbers.

2.1 Gauge invariant quantities

When computing the spectrum it is useful to impose the de Donder-Lorentz gauge choice,

as in [31], which imposes the following conditions on the metric fluctuations

Dah(ab) = Dahaµ = 0, (2.8)

along with analogous conditions on the five-form fluctuations. These gauge conditions

remove terms involving gradients of spherical harmonics.

As discussed in [4], it is often the case that the natural choice of coordinates for the

asymptotic expansion takes the fluctuations outside the de Donder gauge. Indeed, we will

find here that there is a distinguished coordinate choice which is outside de Donder gauge.

This issue may be dealt with using gauge invariant combinations of the fluctuations; these

were derived up to quadratic order in the fluctuations in [4]. For the purposes of this paper

we will need only certain combinations which are gauge invariant at linear order, namely:

π̂kI1 = πkI1 − ΛI1φkI1
(s) (2.9)

B̂kI5
(v)µ = BkI5

(v)µ − 1

2
DµφkI5

(v)

b̂kI1 = bkI1
(s) − 1

2
φkI1

(s)

b̂kI5
µ = bkI5

µ − 1

2(ΛI5 − 4)
DµφkI5

(v) .

Note also that h0
µν is a deformation of the background metric and it indeed transforms as

a metric.

2.2 The spectrum

In this subsection we review the relevant parts of the spectrum of fluctuations about AdS5×
S5 computed in [31]. As discussed in detail in [4], one can relax the de Donder gauge fixing

condition used in [31] by replacing all fields by the gauge invariant (hatted) versions given

in the previous section.
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The scalars relevant here satisfy the following linearized equations

¤ŝkI1 = k(k − 4)ŝkI1, k ≥ 2,

¤t̂kI1 = (k + 4)(k + 8)t̂kI1 , k ≥ 0, (2.10)

where we introduce the combinations

ŝkI1 =
1

20(k + 2)
(π̂kI1 − 10(k + 4)b̂kI1), t̂kI1 =

1

20(k + 2)
(π̂kI1 + 10kb̂kI1), (2.11)

with inverse relations b̂kI1 = −ŝkI1 + t̂kI1, π̂kI1 = 10kŝkI1 + 10(k + 4)t̂kI1. The sI fields are

dual to scalar chiral primary operators.

The relevant vector combinations are

akI5
µ = (B̂kI5

(v)µ − 4(k + 3)b̂kI5
µ ); (2.12)

ckI5
µ = (B̂kI5

(v)µ + 4(k + 1)b̂kI5
µ ),

with the corresponding masses being

m2(ak) = (k2 − 1); m2(ck) = (k + 3)(k + 5). (2.13)

Thus the k = 1 modes of aµ are massless and are dual to the R symmetry currents.

The combination of 10d fields that satisfies the 5d linearized Einstein equation is

h̃0
µν = (h0

µν +
1

3
go
µνπ0); (2.14)

the shift by π0 follows from the Weyl transformation required to bring the 5d action into

the Einstein frame.

2.3 Kaluza-Klein reduction

The non-linear Kaluza-Klein reduction maps for the scalar fields skI were computed in [4].

For k = 2, 3 only the linear term in the reduction formula is needed, namely

SkI = w(sk)skI ; w(sk) =

√

8k(k − 1)(k + 2)z(k)

(k + 1)
, (2.15)

where five-dimensional fields are denoted with capital letters and z(k) is the spherical

harmonic normalization (A.2). For k = 4 the quadratic corrections to the reduction formula

are also needed, thus

S4I = w(s4)(s4I + JIJKs2Js2K + LIJKDµs2JDµs2K), (2.16)

where

JIJK = − 27
√

5√
3π3

aIJK , LIJK = − 40
√

5

3
√

3π3
aIJK (2.17)

with aIJK the triple overlap between scalar harmonics (A.3).
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The reduction formula for the metric was also determined in [4] to be

Gµν = go
µν + h̃0

µν + Lµν ; (2.18)

Lµν = − 1

12

(

2

9
DµDρŝ2IDνDρŝ

2I − 10

3
ŝ2IDµDν ŝ

2I

+(
10

9
(Dŝ2I)2 − 32

9
(ŝ2I)2)go

µν

)

,

where Gµν is the 5d metric. Again the only relevant quadratic corrections are those involv-

ing scalars.

The reduction of gauge fields was not discussed in [4] but can be determined from the

results of [32] for the quadratic action. That is, the action for the vector fields akI5
µ is given

by

S =
N2

2π2

∫

d5x
√
−G

(

w(ak)2(− 1

16
F (akI5)2 − 1

8
(k2 − 1)(akI5)2

)

, (2.19)

with Fµν(a) = ∂µaν − ∂νaµ and

w(ak) =

√

2
(k + 1)z(k)

(k + 2)
. (2.20)

Here z(k) is again the harmonic normalization, defined in (A.2). Then the linear reduction

formula is given by

AkI5
µ = w(ak)akI5

µ (2.21)

where the action for the 5d fields AkI5
µ is

S =
N2

2π2

∫

d5x
√
−G

(

− 1

16
F (AkI5)2 − 1

8
(k2 − 1)(AkI5)2

)

, (2.22)

Non-linear corrections to this reduction formula will not be needed in what follows since

they will not affect the vevs of the R symmetry currents. The normalization of the 5d gauge

fields is such that the corresponding R symmetry currents have the standard normalization,

that is, their two point functions are given by [33]

〈Ja
i (x1)J

b
j (x2)〉 =

N2

2(2π)4
δab(¤δij − ∂i∂j)

1

(x1 − x2)4
, (2.23)

where 4d coordinates are labelled by xi and (a, b) label the SO(6) indices.

2.4 Holographic 1-point functions

The final step is to use the method of holographic renormalization to extract the vevs from

the asymptotics of the 5d fields. This is by now a standard procedure except that here

one needs to include additional terms to accommodate extremal couplings (see section 5.4

of [4]). The relation between field asymptotics and vevs is most transparent in Hamiltonian

variables where the radius plays the role of time. The 1-point functions are then related

to the radial canonical momenta of the bulk fields, which are expressed as (non-linear)

functions of the field asymptotics [28, 29].

– 9 –
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Let us now summarize the expressions for the holographic 1-point functions. Consider

first the metric and scalar fields. The near-boundary expansion of the bulk metric Gµν and

scalar fields Φk, where k is the dimension of the dual operator, take the form

ds2
5 =

dz2

z2
+

1

z2

(

G(0)ij(x) + z2G(2)ij(x) + z4(G(4)ij(x) + log z2h(4)ij(x))
)

dxidxj ;

Φ2(x, z) = z2
(

log z2Φ2
(0)(x) + Φ̃2

(0)(x) + · · ·
)

;

Φk(x, z) = z(4−k)Φk
(0)(x) + · · · + zkΦk

(2k−4)(x) + · · · , k > 2. (2.24)

In these expressions the boundary fields G(0)ij ,Φ
2
(0),Φ

k
(0) parametrize the Dirichlet bound-

ary conditions and are also the field theory sources for the QFT stress energy tensor and

operators of dimension 2 and k, respectively. The near-boundary analysis determines all

coefficients in these expansions except the ones corresponding to the normalizable modes,

namely G(4)ij , Φ̃
2
(0),Φ

k
(2k−4).

Consider first the scalar operators OS2I and OS3I , where I labels their degeneracy. We

will be interested in SO(4) singlet operators which can be labeled by their SO(2) charge

m, but we will express the holographic relations in a more generally applicable way. For

these operators the holographic relations are [4]:

〈OSkI 〉 =
N2

2π2
(πkI

(k)), (2.25)

where πkm
(k) indicates the part of the canonical momentum of the field SkI that scales with

weight k. The relevant part of the canonical momenta can be expressed in terms of the

asymptotic expansion of the 5d fields as follows

πkI
(2k−4) = (2k − 4)[SkI ]k (2.26)

where the notation [A]k indicates the coefficient of the zk term in A and z is the Fefferman-

Graham radial coordinate. The relation (2.26) holds for k 6= 2; when k = 2 one should

replaces the factor (2k − 4) by 2.

As discussed in some detail in [4] the vevs of the scalar operators of dimension four also

involve quadratic terms; these are necessary to accommodate extremal couplings. Thus the

vevs in this case are

〈OS4I 〉 =
N2

2π2

(

π4I
(4) + 15

√
3aIJKπ2J

(2)π
2K
(2)

)

(2.27)

It is useful to express these vevs directly in terms of the coefficients that appear in the 10d

solution. Using the results reviewed above one obtains

〈OS2I 〉 =
N2

2π2

2
√

8

3
[s2I ]2; 〈OS3I 〉 =

N2

2π2

√
3[s3I ]3; (2.28)

〈OS4I 〉 =
N2

2π2

4
√

3

5
[2s4I +

37

9z(4)
aIJKs2Js2K − 7

9z(4)
aIJK(Dµs2J)(Dµs2K)]4,

where z(k) is the normalization of the degree k spherical harmonics, defined in (A.2). The

expression for 〈OS4I 〉 can be further simplified for solutions in which s2 has vev (rather
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than source) behavior, such as those under consideration in this paper. In such cases, the

asymptotics of (2.24) imply that

[(Dµs2JDµs2K ]4 = [z2∂zs
2J∂zs

2K ]4 = 4[s2Js2K ]4 (2.29)

and thus we obtain

〈OS4I 〉 =
N2

2π2

4
√

3

5

[

2s4I +
1

z(4)
aIJKs2Js2K

]

4

. (2.30)

Next consider the stress energy tensor; its vev can be obtained by analyzing the coupled

system of the metric and the scalar fields S2I . (The other 5d fields fall off too fast to

contribute to the stress energy tensor.) The part of the 5d action involving the metric and

one S2 field is same as the sector of gauged supergravity analyzed in [26, 27], where S2

was called Φ. The result for the stress energy tensor can thus be carried over from these

works, with S2 → S2I . Thus one gets

〈Tij〉 =
N2

2π2

(

G(4)ij +
1

3
(S̃2I

(0)S̃
2I
(0))G(0)ij +

1

8
[TrG2

(2) − (TrG(2))
2]G(0)ij (2.31)

− −1

2
(G2

(2))ij +
1

4
G(2)ijTrG(2) +

3

2
h(4)ij

)

,

where the summation over I is implicit. Again it is useful to rewrite this expression

in terms of ten-dimensional fields. First note that the quadratic terms in the reduction

formula (2.18) can be written as

Lzz =
20

27
z2s̃2I

(0)s̃
2I
(0) + · · · ; Lzi = −z3

2
s̃2I
(0)∂is̃

2I
(0) + · · · ;

Lij = −19

27
z2s̃2I

(0)s̃
2I
(0)G(0)ij + · · · . (2.32)

where s̃2I
(0) is the normalizable mode of s2I , see (2.24). Now the uplifted metric is by

definition

go
µν + ho

µν = Gµν − Lµν . (2.33)

The formula (2.31) assumes that Gµν is in Fefferman-Graham form, but since (Lzz, Lzi) 6= 0

this implies that the uplifted 10d metric is not in Fefferman-Graham form. We can however

easily rewrite (2.31) in terms of 10d metric which is in Fefferman-Graham form by applying

a coordinate transformation. This gives the final formula for the vev of the stress energy

tensor

〈Tij〉 =
N2

2π2

(

g(4)ij −
2

3
(s̃2I

(0)s̃
2I
(0))g(0)ij (2.34)

+
1

8
[Trg2

(2) − (Trg(2))
2]g(0)ij −

1

2
(g2

(2))ij +
1

4
g(2)ijTrg(2) +

3

2
h(4)ij

)

,

where g(k)ij are the coefficients in the Fefferman-Graham expansion of the 10d metric.

Let us finally consider the R symmetry currents; from the results of [27] their vevs are

〈Ja
i 〉 = −N2

8π2
Ã1a

i ≡ −
√

2N2

24π2
ã1a

i (2.35)
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where the gauge field is in radial axial gauge, Az = 0, and the asymptotics of the five-

dimensional gauge field (with the source term set to zero) are

A1a
i = (z2Ã1a

i + · · ·). (2.36)

(where the indices kI5 in (2.21) are here k = 1, I5 = a.) It is again useful to rewrite the R

symmetry current in terms of ten-dimensional fields to give the second equality in (2.35).

Before leaving this section, let us comment on the wider applicability of the highlighted

expressions for the holographic vevs, (2.28), (2.34) and (2.35). In this paper we will analyse

in detail the LLM bubbling solutions, which preserve an R×SO(4)×SO(4) symmetry group,

and are associated with 1/2 BPS states of N = 4 SYM on R × S3.

However 1/4 and 1/8 BPS states on R × S3 which are built from operators involving

only the six scalars of N = 4 also induce vevs only for the R-currents, the stress energy

tensor and the scalar chiral primaries. Thus the expressions for the holographic vevs given

here can be used to extract such data from putative dual geometries, of the type constructed

in [34]. It would be straightforward to derive corresponding expressions for more general

asymptotically AdS5 × S5 solutions, which involve more supergravity fields, such as the

Janus solutions recently derived in [35]. Note in particular that the expression given here

for the stress energy tensor (2.34) provides a rigorous way to extract the mass (including

the Casimir term) from the ten-dimensional solution.

3. Bubbling solutions

The LLM bubbling solutions are4

ds2 = −h−2(dt + Vidxi)2 + h2(dy2 + dxidxi) + yeGdΩ2
3 + ye−GdΩ̃2

3;

h−2 = 2y cosh(G); z =
1

2
tanh G; (3.1)

y∂yVi = ǫij∂jz; y(∂iVj − ∂jVi) = ǫij∂yz;

F5 = Fµνdxµ ∧ dxν ∧ dΩ3 + F̃µνdxµ ∧ dxν ∧ dΩ̃3;

F = dBt ∧ (dt + V ) + BtdV + dB̂;

F̃ = dB̃t ∧ (dt + V ) + B̃tdV + dB̃;

Bt = −1

4
y2e2G; B̃t = −1

4
y2e−2G;

dB̂ = −1

4
y3 ∗3 d

(

z + 1
2

y2

)

; dB̃ = −1

4
y3 ∗3 d

(

z − 1
2

y2

)

,

where i = 1, 2 and ∗3 is the Hodge dual on the R3 parameterized by (y, x1, x2). The

solutions are characterized by a harmonic function on six dimensions, with sources on an

R2. That is,
z(x1, x2, y)

y2
=

1

π

∫

R2

z(x′
1, x

′
2, 0)dx′

1dx′
2

((x − x′)2 + y2)2
, (3.2)

4Note that we use the notation z with two completely different meanings; as the function z defined

in (3.1) and also as the Fefferman-Graham radial coordinate, (2.24). The meaning of z should be clear from

the context.
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where regularity of the solution requires that z(x′
1, x

′
2, 0) takes the values ±1

2 . The two-

dimensional vector Vi can be written as

Vi(x1, x2, y) =
ǫij

π

∫

R2

z(x′
1, x

′
2, 0)(xj − x′

j)dx′
1dx′

2

((x − x′)2 + y2)2
. (3.3)

In polar coordinates on R2 this can be written as

Vφ̃ = − r

π

∫

R2

z(r′, φ̃′, 0)(r − r′ cos(φ̃ − φ̃′))r′dr′dφ̃′

((x − x′)2 + y2)2
; (3.4)

Vr =
1

π

∫

R2

z(r′, φ̃′, 0) sin(φ̃ − φ̃′)(r′)2dr′dφ̃′

((x − x′)2 + y2)2
. (3.5)

3.1 AdS5 × S5 solution

The AdS5 × S5 solution is obtained by taking sources for z on a disk of radius r0. Then

zo = −1

2

(

(r2 + y2 − r2
0)

√

(r2 + r2
0 + y2)2 − 4r2r2

0

)

(3.6)

where r is a polar coordinate on R2 such that x1 = r cos φ̃ and x2 = r sin φ̃. Introducing

the following coordinate change on the R2 parameterized by y, x1, x2

y ≡ R̃ cos θ̃ = R cos θ; r ≡ R̃ sin θ̃ =
√

R2 + r2
0 sin θ; φ̃ = φ − t, (3.7)

gives

zo = −1

2
+

r2
0 cos2 θ

(R2 + r2
0 cos2 θ)

. (3.8)

The coordinate shift (3.7) changes the flat metric on R3

ds2
3 = dR̃2 + R̃2(dθ̃2 + sin2 θ̃dφ̃2) (3.9)

to the following metric:

ds2
3 = (R2 + r2

0 cos2 θ)

(

dR2

R2 + r2
0

+ dθ2

)

+ (R2 + r2
0) sin2 θ(dφ − dt)2. (3.10)

The other functions in the metric take the values

(h−2)o = r−1
0 (R2 + r2

0 cos2 θ); (yeG)o = r0 cos2 θ; (3.11)

V o = − r2
0 sin2 θ

(R2 + r2
0 cos2 θ)

(dφ − dt); (ye−G)o =
R2

r0
.

The superscript Ao denotes that these are the background AdS5 × S5 functions, about

which we will expand. Substituting these values into the metric gives

ds2 = r0

(

−(R̂2 + 1)dt2 +
dR̂2

(R̂2 + 1)
+ R̂2dΩ̃2

3 + (dθ2 + sin2 θdφ2 + cos2 θdΩ2
3)

)

, (3.12)
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where R̂ = R/r0. This is indeed the metric on AdS5 ×S5 with global coordinates on AdS5

and curvature radius
√

r0; henceforth r0 will be set to one.

The five form field strength can be obtained in the following way. The two form dB̂ is

given by

(dB̂)θφ = −(dB̂)θt = −1

4
R3(R2 + 1) cos3 θ sin θ∂RΦ; (3.13)

(dB̂)Rφ = −(dB̂)Rt =
1

4
R3 cos3 θ sin θ∂θΦ;

(dB̂)Rθ = −1

4
R3 cos3 θ

(R2 + cos2 θ)

sin θ(R2 + 1)
∂φΦ,

where

Φ = y−2(z +
1

2
), (3.14)

and for AdS5 × S5

Φo =
1

R2(R2 + cos2 θ)
. (3.15)

The two form dB̃ is similarly given by

(dB̃)θφ = −(dB̃)θt = −1

2
cos θ sin θ(R2 + 1) − 1

4
R3(R2 + 1) cos3 θ sin θ∂RΦ;

(dB̃)Rφ = −(dB̃)Rt = −1

2
R sin2 θ +

1

4
R3 cos3 θ sin θ∂θΦ; (3.16)

(dB̃)Rθ = −1

4
R3 cos3 θ

(R2 + cos2 θ)

sin θ(R2 + 1)
∂φΦ,

Substituting into the expression for the five form then gives the following expression for

AdS5 × S5:

F̃ o
tR = R3; F o

θφ = cos3 θ sin θ, (3.17)

as expected.

3.2 Asymptotic expansion

Now let us consider more general solutions which are asymptotic to AdS5 × S5. The field

theory data will be extracted from their asymptotic expansions around the AdS5 × S5

boundary. This expansion can be economically expressed as follows. Let the solution be

expressed in terms of the harmonic function Φ(x1, x2, y) with

Φ = Φo + ∆Φ, (3.18)

where Φo is the harmonic function of the AdS5 × S5 background about which we perturb.

∆Φ can be expressed as

∆Φ(x1, x2, y) =
1

π

∫

R2

∆z(x′
1, x

′
2, 0)dx′

1dx′
2

((x − x′)2 + y2)2
, (3.19)
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where ∆z(x′
1, x

′
2, 0) = (z(x′

1, x
′
2, 0) − zo(x′

1, x
′
2, 0)). Now note that Φ (and hence ∆Φ)

is a scalar harmonic function on R6 which preserves SO(4) rotational symmetry. The

asymptotics can thus be expressed as

∆Φ(R̃, θ̃, φ̃) =
∑

k,m

(∆Φ)km
Y m

k (θ̃, φ̃)

R̃k+4
, (3.20)

where Y m
k (θ̃, φ̃) are normalized SO(4) singlet spherical harmonics of degree k with m la-

beling their SO(2) charge; the properties of such harmonics are discussed in appendix A.

By the addition theorem the coefficients in this expansion are given by [2]

(∆Φ)km = 2k(k + 1)π−1

∫

R2

∆z(x′
1, x

′
2, 0)(C

m
i1···ikxi′1 · · · xi′

k)dx′
1dx′

2, (3.21)

where Cm
i1···ik are SO(4) invariant symmetric traceless tensors on R6 of rank k which are in

one to one correspondence with the SO(4) singlet spherical harmonics. In particular

(∆Φ)20 = 4
√

3π−1

∫

R2

∆z(x′
1, x

′
2, 0)(r

′)3dr′dφ′, (3.22)

where the explicit representation of the SO(4) × SO(2) singlet tensor is used.

Note that the expansion (3.20) begins at k = 2. There is no k = 0 term, since the

leading asymptotics are those of AdS5 ×S5 and k = 1 terms are unphysical since they can

always be removed by choosing the origin of the coordinate system to be at the centre of

mass. The centre of mass conditions imply that

∫

R2

z(r′, φ̃′, 0)r′e±iφ′

(r′dr′dφ̃′) =

∫

R2

∆z(r′, φ̃′, 0)r′e±iφ′

(r′dr′dφ̃′) = 0. (3.23)

The harmonic function (3.20) is expressed in the usual coordinates on R6, but to perturb

relative to AdS5 ×S5 the function needs to expressed in terms of the coordinates (R, θ, φ).

However, for (R, R̃) ≫ 1, this change in coordinates changes the form of (3.20) only at

k ≥ 4, that is,

∆Φ(R, θ, φ, t) = (∆Φ)2m
Y m

2 (θ, φ − t)

R6
+ (∆Φ)3m

Y m
3 (θ, φ − t)

R7
+ (3.24)

1

R8
((∆Φ)4mY m

4 (θ, φ − t) + (∆Φ)2mfm(θ, φ − t)) + · · ·

where the functions fm(θ, φ − t) are given by

f0(θ, φ − t) = f0
0 Y0 + f0

2 Y 0
2 (θ) + f0

4 Y 0
4 (θ); (3.25)

f±2(θ, φ − t) = f±2
2 Y ±2

2 (θ, φ − t) + f±2
4 Y ±2

4 (θ, φ − t).

Note that Y0 = 1. These coefficients are obtained by expanding ∆Φ(R̃, θ̃, φ̃) using

1

R̃2
=

1

R2

(

1 − sin2 θ

R2
+ · · ·

)

; sin θ̃ = sin θ

(

1 +
cos2 θ

2R2
+ · · ·

)

, (3.26)
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and then projecting back onto the basis of spherical harmonics. In what follows we will

need only the following coefficients explicitly

f0
0 = 0; f0

4 = −4
√

3√
5

; f±2
4 = − 8√

5
. (3.27)

The functions appearing in the metric can be expressed in terms of ∆Φ as follows

yeG = cos2 θ(1 + R2(R2 + cos2 θ)∆Φ)
1
2 (1 − cos2 θ(R2 + cos2 θ)∆Φ)−

1
2

≡ cos2 θ(1 + α);

ye−G = R2(1 + R2(R2 + cos2 θ)∆Φ)−
1
2 (1 − cos2 θ(R2 + cos2 θ)∆Φ)

1
2

≡ R2(1 + β);

h−2(R2 + cos2 θ)−1 = (1 + (R4 − cos2 θ)∆Φ − R2 cos2 θ(R2 + cos2 θ)2∆Φ2)−
1
2

≡ (1 + γ);

h2(R2 + cos2 θ) = (1 + (R4 − cos2 θ)∆Φ − R2 cos2 θ(R2 + cos2 θ)2∆Φ2)
1
2

≡ (1 + δ).

Note that the leading order terms in (α, β γ, δ) are of order 1/R2; to extract vevs of oper-

ators of dimension four and less it will be sufficient to expand these quantities up to order

1/R4. Then

α =

(

1

2
R4∆Φ + R2 cos2 θ∆Φ − 1

8
R8(∆Φ)2 + · · ·

)

; (3.28)

β =

(

− 1

2
R4∆Φ − R2 cos2 θ∆Φ +

3

8
R8(∆Φ)2 + · · ·

)

;

γ =

(

− 1

2
R4∆Φ +

3

8
R8(∆Φ)2 + · · ·

)

;

δ =

(

1

2
R4∆Φ − 1

8
R8(∆Φ)2 + · · ·

)

.

Now consider the vector Vi. The centre of mass conditions imply that (∆V ) ≡ (V −V o) is

given by

∆Vφ̃ =
vφ̃(θ̃, φ̃)

R̃4
+ · · · ; ∆Vr =

vr(θ̃, φ̃)

R̃5
+ · · · , (3.29)

with

vφ̃(θ̃, φ̃) = −R6 sin2 θ̃∆Φ +
1

6

(

Y 2,2(∆Φ)22 + Y 2,−2(∆Φ)2(−2) + (∆Φ)20(2Y
2,0 +

1√
3
Y 0)

)

vr(θ̃, φ̃) = − i

6
sin θ̃

(

e2iφ̃∆Φ22 − e−2iφ̃∆Φ2(−2)

)

. (3.30)

Thus

∆Vφ = ∆Vt =
vφ̃

R4
+ · · · ; (3.31)

∆VR = sin θ
vr

R5
+ · · · ; ∆Vθ = cos θ

vr

R4
+ · · · (3.32)
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3.3 Expansion of metric and five form

The asymptotic expansion of the metric is given by

ds2 = −dt2
(

(R2 + 1)(1 + γ) + sin2 θ(γ − δ) − 2
vφ̃

R2

)

+ R2(1 + β)dΩ2
3 + (1 + δ)

dR2

R2 + 1

−2dtdR
vr sin θ

R3
− 2dtdθ

vr cos θ

R2
+ 2dtdφ

(

(γ − δ) sin2 θ −
vφ̃

R2

)

(3.33)

+(1 + δ)dθ2 + cos2 θ(1 + α)dΩ2
3 + 2 sin2 θdφ

(

dθ cos θ

R4

)

vr

sin2 θdφ2

(

1 + δ +
sin2 θ

R2
(δ − γ) + 2

vφ̃

R4

)

+ · · · ,

where the terms retained are sufficient to extract vevs of operators of dimension four and

less. That is, to extract the vevs of the scalar operators with dimension less than or equal

to four one needs (π, φ(s)) to order 1/R4. To extract the vev of the R symmetry current

one will need B(v)µ with µ 6= R to order 1/R2. For the vev of the stress energy tensor one

needs (π0, h̃0
µν) up to order 1/R4.

In actually extracting these fields there is considerable simplification relative to the

discussions of [4]. Consider first the perturbations tangent to the sphere and note that

habdxadxb = (1 + α)(dθ2 + cos2 θdΩ2
3 + sin2 θdφ2) + O

(

1

R4

)

. (3.34)

This implies that to order 1/R4 the metric perturbation along the sphere is in de Donder

gauge, with only the trace π non-vanishing. Compared to [4] where the fields φ(s) (zero

in de Donder gauge) were already excited at order 1/R2 there is simplification. Gauge

invariant combinations of fluctuations are needed first at order 1/R4 (or correspondingly

when computing vevs of operators of dimension four) and moreover only linearly gauge

invariant quantities will be needed at this order. One would only need to use gauge invariant

quantities at non-linear order for computing vevs of operators with dimension greater than

four. Thus one can immediately extract

π̂km = πkm =
5

2Rk
(∆Φ)kme−imt + · · · ; k = 2, 3. (3.35)

To obtain (π0, π4, φ4
(s)) we split the sphere perturbation into its trace and traceless parts:

π =

(

5δ + R2(3 − 2 sin2 θ)∆Φ +
2vφ̃

R4
+ · · ·

)

; (3.36)

h(θθ) =

(

−1

5
R2∆Φ(3 − 2 sin2 θ)−

2vφ̃

5R4
+ · · ·

)

;

h(φφ) = sin2 θ

(

1

5
R2∆Φ(7 sin2 θ − 3) +

8vφ̃

5R4
+ · · ·

)

;

h(χαχβ) = cos2 θĝχαχβ

(

1

5
R2∆Φ(2 − 3 sin2 θ) −

2vφ̃

5R4
+ · · ·

)

,
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with hθφ as given in (3.33), χα are coordinates on S3 and ĝχαχβ is a unit radius metric on

S3. Projecting onto the basis of spherical harmonics gives

π4m = e−imt

(

5

2R4
(∆Φ)4m − 5

8R4z4
ampq(∆Φ2n∆Φ2q) + 168φ4m

(s) + · · ·
)

; (3.37)

φ4±2
(s) =

(

−
√

2

12
√

5R4
(∆Φ)2±2 + · · ·

)

;

φ40
(s) =

(

−
√

3

12
√

5R4
(∆Φ)20 + · · ·

)

;

π0 =

(

− 5

8R4
(∆Φ2n∆Φ2(−n)) + · · ·

)

.

Thus the gauge invariant combinations are

π̂4m = e−imt

(

5

2R4
(∆Φ)4m − 5

8R4z4
amnp(∆Φ2n∆Φ2p) + 200φ4m

(s) + · · ·
)

; (3.38)

Now consider the vector fields. The (non-zero) metric fluctuations hµa can be expressed as

hta =
i

6R2
Da

(

Y 2,2(∆Φ)22 − Y 2,−2(∆Φ)2(−2)

)

− 1√
6R2

(∆Φ)20Y
1
a . (3.39)

The physical vector fields arise from the projection of the hµa terms onto vector harmonics

to give BI5
(v)µ. The non-zero projection of hµa onto scalar harmonics takes the metric outside

de Donder gauge, but the resulting vectors BI1
(s)µ do not contribute to any gauge invariant

quantities computed here. Thus the only relevant vector term is

B1
(v)t = − 1√

6R2
(∆Φ)20. (3.40)

Finally let us consider the metric perturbation. The perturbation h̃0
µν receives contributions

only from the first line in (3.33) since the htR term does not project onto Y 0; vr sin θ projects

only onto Y 2±2. Thus the metric go
µν + h̃0

µν with h̃0
µν = h0

µν + 1
3π0go

µν is given by

ds2 = −dt2
(

R2 + 1 − 1

4
√

3R2
(∆Φ)20 +

1

6R2
(∆Φ2n∆Φ2(−n))

)

(3.41)

+
dR2

(R2 + 1)

(

1 − 1

3R4
(∆Φ2n∆Φ2(−n))

)

+dΩ̃2
3

(

1 +
1

12
√

3R2
(∆Φ)20 +

1

6R2
(∆Φ2n∆Φ2(−n))

)

,

where summation over n = (−2, 0, 2) is implicit.

Next consider the five form field strength. To compute the vevs we need only the

modes (bI5
µ , bI

(s)) in the expansion. This means that we need only expand fµa ≡ (Fµα) and
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fθφ ≡ (Fθφ − F o
θφ) giving

fθφ = sin θ cos3 θ

(

−1

4
R3(R2 + 1)∂R∆Φ +

α

R2
(1 − 3 sin2 θ) + sin θ cos θ

∂θα

2R2

+
vφ̃

R4
− cos θ

4R4 sin θ
(∂θvφ̃ − cos θ∂φvr) + · · ·

)

;

fRθ = sin θ cos3 θ

(

−1

4
R3 ∂φ∆Φ

sin2 θ
+ · · ·

)

; (3.42)

fRφ = sin θ cos3 θ

(

1

4
R3∂θ∆Φ + · · ·

)

;

fθt = sin θ cos3 θ

(

1

4
R5∂R(∆Φ) + 2α − cos θ

2 sin θ
∂θα + · · ·

)

;

fφt = −1

2
cos4 θ∂φα + · · · .

From the fθt term one gets

fθt = sin θ cos3 θ

(

− 1

2
√

3R2
(∆Φ)20 + · · ·

)

, (3.43)

from which one can extract

b1
t = − 1

8
√

6R2
(∆Φ)20. (3.44)

Combining this with the vector (3.40) extracted from the metric one finds that

a1
t = −

√
3√

2R2
(∆Φ)20; c1

t = 0. (3.45)

This is the anticipated result since the massive vector c1 should not be excited at this

order.

From the fθφ terms one finds

bkm
(s) = − 1

4kRk
e−imt(∆Φ)km; k = 2, 3 (3.46)

b4m
(s) =

(

− 1

16R4
e−imt(∆Φ)4m − 9

2
φ4m

(s)

)

,

and therefore the gauge invariant quantities are

b̂km
(s) = − 1

4kRk
e−imt(∆Φ)km − 5φ4m

(s) ; k = 2, 3, 4. (3.47)

Putting together (3.38) and (3.47) gives

ŝkm = e−imt

(

1

4kRk
(∆Φ)km+

(

5φ4m
(s) −

1

96R4z4
amnp(∆Φ2n∆Φ2p)

)

δk4+· · ·
)

. k = 2, 3, 4;

t̂4m = − 1

64R4z4
e−imtamnp(∆Φ2n∆Φ2p). (3.48)
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Note that there are no φ4m
(s) terms in the gauge invariant fields t̂4m. This is a computational

check: using [4] these fields satisfy the field equations

(¤ − 96)t̂4m = 96z−1
4 amnpŝ

2nŝ2p, (3.49)

and thus at order 1/R4 can only receive contributions quadratic in ∆Φ2n. The φ4m
(s) terms

are linear in ∆Φ2n and thus cannot contribute to the fields t̂4m at this order.

3.4 Holographic vevs

Given the asymptotic expansions of the relevant fields we can extract the values for the vevs

using the formulae from section 2.4. The relation for the R symmetry current vev (2.35)

along with (3.45) implies that

〈Jt〉 =
N2

2π2

1

4
√

3
(∆Φ)20. (3.50)

To apply the formula (2.34) for the vev of the stress energy tensor one must first bring the

metric (3.41) into Fefferman-Graham form, by the coordinate change

z =
1

R

(

1 − 1

4R2
+

19

128R4
− 1

24R4
(∆Φ)2n(∆Φ)2(−n)

)

. (3.51)

Then

〈Ttt〉 =
N2

2π2

(

3

16
+

1

4
√

3
(∆Φ)20

)

; (3.52)

〈Tαβ〉 =
N2

2π2

(

1

16
+

1

12
√

3
(∆Φ)20

)

gαβ ; (3.53)

where gαβ is the metric on the unit radius S3. Using the explicit form for (∆Φ)20 from (3.22)

and reinstating factors of a, the inverse radius of the S3, gives

〈Jt〉 =
N2

2π2
a

∫

R2

ρ

(

r2 − 1

2
a2

)

rdrdφ; (3.54)

〈Ttt〉 =
N2

2π2

(

3a4

16
+ a2

∫

R2

ρ

(

r2 − 1

2
a2

)

rdrdφ

)

= 〈Ttt〉c + a〈Jt〉,

where 〈Ttt〉c is the Casimir on R × S3 and the density function ρ(r, φ) satisfies
∫

R2

ρ(r, φ)rdrdφ = 1; ρo =
1

πa2
θ(a − r). (3.55)

We define θ(x) = 1 for x ≥ 0 and θ(x) = 0 otherwise. A general distribution is such that

ρ(r, φ) takes the value 1/πa2 in a region of the plane with area πa2, and is zero everywhere

else. The corresponding mass E and R-charge J are given by integrating these expressions

over the S3, resulting in

J = N2a

∫

R2

ρ

(

r2 − 1

2
a2

)

rdrdφ; (3.56)

E = N2

(

3a4

16
+ a2

∫

R2

ρ

(

r2 − 1

2
a2

)

rdrdφ

)

= Ec + aJ.
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These quantities have the expected behavior, namely J = 0 for AdS with the Casimir

energy Ec taking the expected value; the energy and angular momentum tend to zero in

the limit of a large S3 and the BPS bound (E − Ec) = aJ is saturated.

For the scalar operators (2.30) along with (3.48) implies the following result for the

vevs:

〈OSkm〉 =
N2

π2

(k − 2)

2
1
2
k(k + 1)

√

(k − 1)

k
e−iamt

(

(∆Φ)km + 80R4φ4m
(s) δk4

)

;

80R4φ4±2
(s) = −4

√
10

3
(∆Φ)2±2; 80R4φ40

(s) = −4
√

5√
3

(∆Φ)20, (3.57)

with (k − 2) → 1 for k = 2 and the scale a, the inverse radius of the S3, reinstated. For

operators with |m| = k (and k 6= 1) the vevs are therefore

〈OSk±k〉 =
N2

√
kπ2

(k − 2)
√

k − 1e−iakt

∫

R2

(rkρ)e±ikφrdrdφ. (3.58)

Recall that there is no k = 1 operator in the SU(N) theory; the integral vanishes in this

case because of the centre of mass condition (3.23). For the other operators with dimension

less than four, one gets

〈OS20〉 =

√
2N2

√
3π2

∫

R2

(r2∆z)rdrdφ; (3.59)

=

√
2N2

√
3π2

(
∫

R2

ρ

(

r2 − 1

2
a2

)

rdrdφ

)

;

〈OS3±1〉 =
N2

π2
e∓iat

∫

R2

(r3ρ)e±iφrdrdφ,

where in the second expression for the neutral operator the explicit form of ρo is used. For

the operators with dimension four, again reinstating the inverse radius of the S3 one finds

〈OS40〉 =

√
3N2

√
5π2

∫

R2

∆z(3r4 − 4a2r2)rdrdφ; (3.60)

=

√
3N2

√
5π2

(
∫

R2

ρ(3r4 − 4a2r2 + a4)rdrdφ

)

;

〈OS4±2〉 =
4
√

3N2

√
10π2

e∓2iat

∫

R2

ρ(r4 − a2r2)e±2iφrdrdφ.

The general structure of the vevs is thus

〈OSkm〉 = N2e−imat

1
2
(k−|m|)
∑

l=0

αl

∫

R2

ρ(rk−2la2l)eimφrdrdφ, (3.61)

with certain coefficients αl. These vevs can also be written in the form

〈OSkm〉 = Mke
−iamt(∆Φ)km + αkma2〈OS(k−2)m〉 + βkma4〈OS(k−4)m〉 + · · · (3.62)
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where (Mk, αkm) are appropriate constants. In the a → 0 limit only the first term survives,

and as will discuss below one recovers the Coulomb branch result. Since k ≥ |m| the

vevs of maximally operators only receive contributions from the first term. Our explicit

computations go up to dimension four, but if one assumes this structure persists in the vevs

of higher dimension operators then the result (3.58) holds for maximally charged operators

of all dimension. We will find that the field theory result does indeed reproduce (3.58)

for all k, thus verifying this hypothesis. By contrast the vevs of non-maximally charged

operators do receive other contributions and thus one needs to calculate explicitly the

appropriate coefficients (αkm, βkm, . . .).

These expressions make manifest the limiting behavior as a → 0 and the theory passes

to that of the Coulomb branch of N = 4 on R3,1. The R-charge and the energy as

given in (3.54) vanish in this limit, as expected for supersymmetric vacua of N = 4 on

R3,1. However, the scalar chiral primary vevs remain non-trivial for appropriate density

functions ρ(r, φ). Each density function describing a regular bubbling geometry consists

of N droplets di, such that ρ(r, φ) takes the value 1/πa2 on the droplet, and the area of

each droplet is πa2. Suppose the boundary of the droplet is described by r = ri + di(φ),

with ri constant and some suitable function di(φ). Then the density function describing

the droplet is

ρdi
(r, φ) =

1

πa2
θ(ri + di(φ) − r), (3.63)

such that ∫

di

ρdi
(r, φ)rdrdφ =

1

N
. (3.64)

Coulomb branch solutions are then obtained in the limit that ri stays finite as a → 0: the

density function for each droplet behaves as

ρdi
(r, φ) → 1

N
δ(x1 − x1

i )δ(x
2 − x2

i ), (3.65)

satisfying (3.64). Here (x1
i , x

2
i ) describe the location of the droplet in the 1-2 plane, and in

this limit each of the N droplets is associated with an eigenvalue of the matrices (X1,X2).

Clearly in the a → 0 limit the disc density function describing the conformal vacuum

becomes a delta function localized at the origin, ρ(r, φ) → δ(x1)δ(x2).

Now taking the a → 0 limit in the vevs of the scalar chiral primaries one gets

〈OSkm〉 =
N2

π2

(k − 2)

2k/2(k + 1)

√

(k − 1)

k
(∆Φ)km; (3.66)

=
N2

π2
2k/2(k − 2)

√

(k − 1)

k

∫

R2

dx1dx2ρ(x1, x2)(Ckm
i1···ikxi1 · · · xik),

in exact agreement with the Coulomb branch vevs given in [2], restricting to an SO(4)

invariant distribution.

4. Dual description

In this section we will consider half BPS states in N = 4 SYM, and their relation to free

fermions. We discuss the correspondence between an arbitrary half BPS state and a two-
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dimensional density distribution, which in turn is to be identified with the defining density

function of the bubbling supergravity solution. In particular, we show that the state is

not completely determined by this density distribution, but the density distribution does

determine uniquely the vevs of all single trace chiral primary operators. These in turn are

precisely the information that is encoded in the asymptotics of the LLM solutions. Thus

one would anticipate that the LLM solutions receive higher order corrections, involving

information beyond the density function, which capture the dual state uniquely.

4.1 Half BPS states in N = 4 SYM

There is a one-to-one correspondence between half BPS SO(4) symmetric representations

of N = 4 SYM and symmetric polynomials in the eigenvalues of a complex matrix Z or

Schur polynomials. Here Z is one combination of the six Hermitian scalars Xm of N = 4

SYM, given by Z = X1 + iX2.

There are several choices of basis for the gauge invariant multi-trace polynomials of Z:

(i) The trace basis of products of traces of Z is an obvious gauge invariant basis.

For the group U(N) the multitraces can be labelled by p(n) conjugacy classes of

the permutation group Sn where p(n) is the number of partitions of n. Labeling

representatives of different conjugacy classes of Sn by σI , the basis of multi-trace

operators is given by Tr(σIZ):

Tr(σIZ) =
∑

j1···jn

Zj1
jσI(1)

Zj2
jσI (2)

· · ·Zjn

jσI(n)
. (4.1)

For SU(N) Z is traceless and one must therefore restrict to elements of Sn without

1-cycles; the distinction between U(N) and SU(N) is however not important in the

N → ∞ limit relevant here.

(ii) The Schur polynomial basis is, in the case of U(N), a sum over these trace oper-

ators, weighted by the characters of σ in the representation R of Sn, namely

χR(Z) =
1

n!

∑

σ∈Sn

χR(σ)Tr(σZ). (4.2)

The representations R can be labeled by Young diagrams with n boxes, which corre-

spond to partitions of n and there are thus p(n) Schur polynomials of degree n. An

advantage of this basis is that the two-point functions are diagonal. Again modifica-

tions are needed for the case of SU(N), but these give 1/N effects which will not be

relevant here.

Note that another useful basis is the dual basis, dual to the trace basis, but this will not

play a role here.

An arbitrary half BPS state |Φ〉 preserving SO(4) R symmetry can therefore be written

as a superposition of states

|Φ〉 =
∑

R

aRχR(Z)|Ω〉 =
∑

I

bITr(σIZ)|Ω〉, (4.3)
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for suitable (complex) coefficients aR and bI , with |Ω〉 being the conformal vacuum. De-

noting by OA the set of gauge invariant operators, the vevs of these operators in the state

|Φ〉 are given by

〈OA〉Φ =
∑

R,R′

a∗RaR′〈Ω|(χR(Z))†OAχR′(Z)|Ω〉; (4.4)

=
∑

I,J

b∗IbJ〈Ω|(Tr(σIZ))†OATr(σJZ)|Ω〉.

A state is an eigenstate of the dilatation operator and of the R-symmetry (in the 1-2

directions) with eigenvalue n if and only if the superposition involves only Sn. That is,

only operators involving n fields Z are included in the superposition.

It is also important to note that in the N → ∞ limit there are considerable simplifi-

cations in three point functions appearing in (4.4). Let us consider first computations in

the trace basis, where the operators are normalized as CσI
n
Tr(σn

I Z) with n the dimension.

The normalization factors CσI
n

are such that the basis is orthonormal in the large N limit,

namely

CσI
n
CσJ

m
〈Ω|(Tr(σn

I Z))†Tr(σm
J Z)||Ω〉 = δIJδnm + O(1/N), (4.5)

and the large N scaling of C2
σI

n
is 1/Nn.

Now consider the three point functions (4.4) in which the operators OA are single trace

operators built from the six scalar fields Xm. These are clearly the relevant operators to

compare with the holographic results. As discussed in [36] three point functions which

are extremal, so that the conjugate operator has a dimension which is the sum of the

dimensions of the other operators, and those which are non-extremal are known to have

different large N behavior. Since the state |Φ〉 is a sum of terms each of which is maximally

charged, i.e. it has j = ∆, it follows that the 3-point functions are never extremal when OA

is not maximally charged. Moreover the large N behavior depends on whether the other

operators in the correlator are single or multi-trace. We discuss in appendix C the large

N behavior of such correlators, and summarize here the relevant results:

Non-extremal correlators: non-extremal three point functions for which OA are (or-

thonormal) single trace operators scale as 1/N or smaller in the large N limit. Note that

this assumes that the dimensions of all operators in the correlator are small compared to

N . In the case that the operator OA is neutral under SO(2) × SO(4) R symmetry the

correlators behave as 1/N only for the diagonal terms, namely when σn
I = σm

J . When

the operator OA has a non-maximal SO(2) charge m the correlators involving single trace

operators still behave as 1/N ; correlators involving multi-trace operators are generically

subleading in N , but for special cases can also behave as 1/N .

Extremal correlators: extremal three point functions scale as one or smaller in the

large N limit. Correlators involving only single trace operators behave as 1/N , whilst

multi-trace correlators in which Tr(σn
I Z) = OATr(σm

J Z) (and therefore σn
I is necessarily

multi-trace) are of order one.
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One can also rephrase these results in terms of the Schur polynomial basis, as discussed

in [6]. As we will show in section 6.1, the vev of the SO(2)×SO(4) neutral operators in the

state built from a given Schur polynomial of dimension n is independent of the choice of

Schur polynomial. To leading order in N it behaves as n/N . This result has an immediate

corollary: consider geometries dual to different superpositions of the Schur polynomials, all

of the same dimension n. Then symmetry implies only the neutral operators acquire vevs

but these vevs differ only by 1/N effects, so these geometries are not reliably distinguishable

within supergravity.

Now consider a superposition of states of different dimension (and thus R charge). In

such a case SO(2) charged single trace operators acquire vevs, and the computation of

the vevs of maximally charged operators necessarily involves extremal correlators. The N

scalings of these vevs depend crucially on the specific Schur polynomials, or equivalently

multi-trace operators, appearing in the superposition. Superpositions involving single trace

operators will lead to vevs which are suppressed by 1/N relative to multi-trace superpo-

sitions, and thus these are immediately distinguishable. An explicit example illustrating

this effect will be discussed in section 6.3.

4.2 Relation to free fermions

Consider irreducible representations of the symmetry group Sn. These may be charac-

terized by a sequence of non-negative integers {λ} = (λ1, . . . , λN ) with λ1 ≥ λ2 ≥ · · · ≥
λN ≥ 0 and

∑N
i=1 λi = n. The sequence defines a Young tableau with the number of

boxes in the ith row being λi and the total number of boxes being n; let χn
{λ}(Z) be the

corresponding Schur polynomial. In this section we will review the relationship between

Schur polynomials and free fermions.

We introduce a second quantized free fermion field

Ψ(z, z∗, t) =

∞
∑

l=0

Ĉle
−i(l+1)tΦl(z, z∗) (4.6)

where (Ĉl, Ĉ
†
l ) satisfy the anti-commutation relation {Ĉl, Ĉ

†
m} = δlm. Note that throughout

this section we will set the inverse radius a of the S3 to one; this sets the mass scale in the

matrix model, and thus of the fermions, to one. The functions Φl(z, z∗) are the orthonormal

wavefunctions of the lowest Landau level, and are given by

Φl(z, z∗) =

√

2l+1

πl!
zle−zz∗. (4.7)

The fermion field Ψ(z, z∗, t) satisfies the constraint that the total number of fermions be

N ,
∫

dzdz∗Ψ†(z, z∗, t)Ψ(z, z∗, t) =
∞
∑

l=0

Ĉ†
l Ĉl = N. (4.8)

The ground state is denoted |Ω〉 and is given by

|Ω〉 = Ĉ†
N−1Ĉ

†
N−2 · · · Ĉ

†
1Ĉ

†
0|0〉, (4.9)
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where |0〉 is the Fock vacuum defined by Ĉl|0〉 = 0 for all l. We will denote by |Φ〉 a generic

state containing N fermions; each such state can also be expressed as a superposition of

Schur polynomials. The Schur polynomial χn
{λ}(Z) corresponds to the state

Ĉ†
N−1+λ1

Ĉ†
N−2+λ2

· · · Ĉ†
1+λN−1

Ĉ†
λN

|0〉. (4.10)

Now consider the expectation value of the density function defined as

Û(z, z∗, t) = Ψ†(z, z∗, t)Ψ(z, z∗, t). (4.11)

In the conformal vacuum

〈Û (z, z∗, t)〉Ω =

N−1
∑

l=0

Φ∗
l (z, z∗)Φl(z, z∗); (4.12)

=

N−1
∑

l=0

2l+1

πl!
(zz∗)le−2zz∗ ≡ 2π−1e−2zz∗EN−2(2zz∗),

where by definition

EN−1(y) =

N
∑

l=0

yl

l!
. (4.13)

For N ≫ 1,

e−yEN−1(y) → θ(N − y) + f(y), (4.14)

where θ(x) = 1 for x ≥ 0 and θ(x) = 0 for x < 0. The function f(y) describes the smearing

of the step function; f(y) has support only within a region around y = N of width of order

one and is such that f(y) < 0 for y < N , f(y) > 0 for y > N with
∫ ∞

0
dyf(y) = 0;

∫ ∞

0
dy|f(y)| = O(1). (4.15)

Thus to leading order as N → ∞

〈Û (z, z∗)〉Ω =
2

π
θ(N − 2|z|2). (4.16)

To compare with the supergravity results one therefore needs

|z| =

√

N

2
|w|; 〈Û〉Ω = 2ρ, (4.17)

with |w| identified with the supergravity coordinate r. In a generic state |Φ〉 the density

function is given by

〈Û (z, z∗, t)〉Φ =
∑

l,m

Φ∗
l (z, z∗)Φm(z, z∗)ei(l−m)t〈Ĉ†

l Ĉm〉Φ; (4.18)

=
∑

l,m

ei(l−m)t(z∗)lzm

√

22+l+m

π2l!m!
e−2z∗zUΦ

lm,

where we define

UΦ
lm = 〈Ĉ†

l Ĉm〉Φ. (4.19)

The supergravity density function is related to this via

〈Û(t = 0)〉Φ = 2ρ. (4.20)
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4.3 Extracting the state from a distribution

In this section we consider how to derive the specific superposition of Schur polynomials

corresponding to a given distribution. Recall that the expectation value of the density

function given in (4.18) is

〈Û(z, z∗, t)〉Φ =
∑

l,m

Φ∗
l (z, z∗)Φm(z, z∗)ei(l−m)t〈Ĉ†

l Ĉm〉Φ. (4.21)

Thus by integrating a given density function with respect to a suitable basis of orthonormal

polynomials one can extract the coefficients 〈Ĉ†
l Ĉm〉Φ. Note however that these expansion

functions Φ∗
l Φm are not orthogonal, when integrated over the plane with unit measure.

So in practice it is actually more convenient to work with the density function in phase

space, û(p, q, t), which is naturally expanded in a useful basis of orthonormal functions.

The explicit relationship between the density functions Û(z, z∗, t) and û(p, q, t) was given

in [10]:

Û(z, z∗, t) =

∫

dΛdΛ∗

4π2
e−Λ∗z+Λz∗− 1

4
ΛΛ∗

∫

dpdqe−Λ(q+ip)+Λ∗(q−ip)û(p, q, t). (4.22)

Then, following [10] one finds that
∫

dzdz∗(−1)k(z∗)jzkÛ =
∂j+k

∂Λj∂Λ∗k

(

e−
1
4
ΛΛ∗

∫

dpdqe−Λ(q+ip)+Λ∗(q−ip)û

)

Λ=Λ∗=0

(4.23)

Now to make manifest the behavior in the large N limit one should rescale these coordinates

as in (4.17) so that

|z| =

√

N

2
|w|; q =

√

N

2
x; p =

√

N

2
y. (4.24)

Retaining only the leading order terms in (4.23) as N → ∞ gives
∫

d2w(w∗)jwkÛ =

∫

d2xrj+kei(k−j)φû, (4.25)

where x = r cos φ, y = r sin φ. As we have seen from the holographic computations, and

will discuss below, all one point functions are expressed in terms of these integrals. Thus

at leading order in N one can identify |w| = r and the difference between the distributions

(Û , û) is not visible. Whilst it is more natural for the droplet distribution in the bulk solu-

tion to be identified with the phase space distribution, rather than the z space distribution,

this is not distinguishable at leading order in N .

In some calculations, such as that of one point functions which we will discuss below,

it is more convenient to use the z space distribution, and exploit the simple form of its

expansion in exponentials. For the current purpose it is rather more convenient to work

with the phase space distribution, since this is expanded in a natural basis of orthonormal

functions, the Laguerre polynomials. That is, the phase space distribution is given by [10]:

πρΦ =
∑

m≤n

√

m!

n!
(−1)mχ

1
2
(n−m)e−

1
2
χei(m−n)φLn−m

m (χ)〈Ĉ†
mĈn〉Φ (4.26)

+
∑

m>n

√

n!

m!
(−1)nχ

1
2
(m−n)e−

1
2
χei(m−n)φLm−n

n (χ)〈Ĉ†
mĈn〉Φ,
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where χ = Nr2 and Ln−m
m (χ) is the Laguerre polynomial defined by

Lα
n(χ) =

n
∑

p=0

(−1)p

(

n + α

n − p

)

χp

p!
, (4.27)

for which the orthogonality relation is

∫ ∞

0
dχe−χχαLα

n(χ)Lα
m(χ) = δmn

(n + α)!

n!
, (4.28)

for integral α. In the conformal vacuum one gets

πρΩ =

N−1
∑

m=0

(−)me−
1
2
χLm(χ) (4.29)

where Lm(χ) ≡ L0
m(χ). Using the identity

∫ ∞

0
dχe−

1
2
χLm(χ) = 2(−1)m (4.30)

one can show that this satisfies the normalization condition
∫

d2xρΩ = 1. Moreover for

large N the distribution asymptotes as before to a disc, πρΩ → θ(1 − r).

Using the orthogonality relation for the Laguerre polynomials one can now extract the

〈Ĉ†
mĈn〉Φ via:

〈Ĉ†
mĈm+p〉Φ = (−1)m

1

4

√

(m + p)!

m!

∫

dφeipφdχχp/2e−χ/2Lp
m(χ)ρΦ; (4.31)

〈Ĉ†
m+pĈm〉Φ = (−1)m

1

4

√

(m + p)!

m!

∫

dφe−ipφdχχp/2e−χ/2Lp
m(χ)ρΦ,

where (m, p) ≥ 0.

Thus from the distribution ρΦ one can extract the complete set of 〈Ĉ†
mĈn〉Φ. Let us

now discuss whether knowledge of these is in principle sufficient to determine the state

|Φ〉.5 Consider first the case where |Φ〉 has definite dimension n, so that

|Φ〉 =
∑

{λ}
a{λ}|n; {λ}〉. (4.32)

Normalization of the state implies that
∑

{λ} |a{λ}|2 = 1. In such a state 〈Ĉ†
mĈp〉Φ is

non-zero only for m = p and

〈Ĉ†
mĈm〉Φ =

∑

{λ}
|a{λ}|2δ{λ}m, (4.33)

where δ{λ}m = 1 iff the corresponding state contains a fermion at level m. Therefore

one cannot extract the phases of a{λ} from this information: the density function is not

sufficient to completely determine the state. There is one exception to this: when precisely

5Related discussions appeared in the recent paper [38].
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N of the 〈Ĉ†
mĈm〉Φ are non-zero and equal to one, the corresponding state is necessarily

a single Schur polynomial. In this case the summation in (4.32) collapses to one term,

and the overall phase of the state plays no role. Note that this is precisely the case that

was discussed in [37], but for a general state of definite dimension the distribution is not

sufficient to determine the state. To determine the phases in the general case one would

need to know in addition

〈
∏

i

Ĉ†
mi

∏

j

Ĉmj
〉Φ,

∑

i

mi =
∑

j

mj . (4.34)

It will be made manifest in the next section that 〈Ĉ†
mĈp〉Φ determines the expectation

values of single trace operators in the state, see (5.32), whilst (4.34) is related to the

expectation values of multi-trace (neutral) operators.

Note that the discussion so far has made no restriction on N . Even if one can determine

the 〈Ĉ†
mĈm〉Φ exactly one can still not determine the state. Of course when one takes the

N → ∞ limit and sharpens the distribution such that it gives a regular supergravity

solution the situation will be worse. One will not be able to determine the coefficients

〈Ĉ†
mĈm〉Φ exactly, and thence one can only determine the leading behavior in N of the

|a{λ}|2.
Now consider a general state |Φ〉 which does not have a definite dimension, so that

|Φ〉 =
∑

n,{λ}
an,{λ}|n; {λ}〉. (4.35)

The neutral vevs 〈Ĉ†
mĈm〉Φ still do not determine the phases of the an,{λ}. However, some

phase information is obtained via the vevs of charged operators. That is,

〈Ĉ†
m+pĈm〉Φ =

∑

n,{λ}
a∗n+p,{λ}p

an,{λ}〈n + p; {λ}p|Ĉ†
m+pĈm|n; {λ}〉, (4.36)

=
∑

n,{λ}
a∗n+p,{λ}p

an,{λ},

where the Schur polynomial |n + p; {λ}p〉 is precisely Ĉ†
m+pĈm|n; {λ}〉. That is, the state

|n + p; {λ}p〉 differs from |n; {λ}〉 by only one fermion. So only a subset of the phase

information is obtained; this is sufficient to determine the state when the superposition

contains Schur polynomials such that each of which differs by only one fermion from at

least one other polynomial in the superposition. If however the state contains at least one

Schur polynomial which differs by two fermions or more from all other Schur polynomials

in the superposition, then the phase of the coefficients of these terms cannot be determined

without vevs of multi-trace operators. Thus for a general distribution one would again need

vevs of multi-trace operators to determine the coefficients in |Φ〉 uniquely.

The supergravity solutions are constructed entirely out of the density function ρΦ and

therefore contains information only about the expectation values of single trace operators.

To determine the state |Φ〉 one needs the expectation values of all other operators, which

are not determined by ρΦ. Therefore, one would expect that the higher order corrections to
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the LLM bubbling solution, apart from correcting the distribution ρΦ, would also involve

additional information so that the corrected solution captures the entire vacuum structure.

This is in line with the fact that the IIB supersymmetry rules are expected to receive

non-trivial higher derivative corrections.

5. Computation of vevs

In the previous section we set up the correspondence between a general half BPS state

and a density distribution. The information extracted holographically is the vevs of chiral

primary operators, and in this section we will discuss how these vevs may be computed in

an arbitrary half BPS state. We compute explicitly vevs of all operators up to dimension

four, and the vevs of maximally charged operators of arbitrary dimension, and find exact

agreement with the holographic results. These results are a detailed confirmation of the

correspondence between LLM bubbling solutions and 1/2 BPS states, and moreover provide

evidence that the vevs are not renormalized, as one might anticipate given the sixteen

preserved supercharges.

5.1 Energy and R-charge

In a generic state |Φ〉 the energy and R-charge J relative to that of the conformal vacuum

is

(E − Ec) = J =
∑

m

m〈Ĉ†
mĈm〉Φ −

N−1
∑

m=0

m =
∑

m

m〈Ĉ†
mĈm〉Φ − 1

2
N(N − 1), (5.1)

where Ec = 3N2/16 is the Casimir energy on R×S3. This Casimir is clearly not reproduced

correctly by the matrix model, since there are contributions from all KK modes on the S3

of all SYM fields. Now note that

∫

d2z|z|2k〈Û(z, z∗, t)〉Φ =
∑

m

(m + k)!

2km!
〈Ĉ†

mĈm〉Φ. (5.2)

Thus
∑

m

m〈Ĉ†
mĈm〉Φ =

∫

d2z(2|z|2 − 1)〈Û (z, z∗, t)〉Φ, (5.3)

and hence

(E − Ec) = J =

∫

d2z

(

2|z|2 − 1

2
(N + 1)

)

〈Û (z, z∗, t)〉Φ; (5.4)

= N2

∫

d2w

(

|w|2 − 1

2

(

1 +
1

N

))

ρ,

which agrees with the holographic result (3.54), after taking the N → ∞ limit.
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5.2 Vevs of maximally charged operators

We now consider how the vevs of single trace operators O∆,k of dimension ∆ and SO(2)

charge k may be computed. Here we will use O∆,k to denote the operator in field theory,

whose vevs we compute within free field theory, whilst OS∆k refers to the corresponding

operator whose vevs at strong coupling were computed holographically.

Let us begin by computing the vev of the maximally charged single trace scalar operator

of dimension k, Ok,k, in a generic state. The operators Ok,k are implemented as follows:

Ok,k = Nkλk,ke
ikt

∞
∑

l=0

√

(l + k)!

l!
Ĉ†

l+kĈl. (5.5)

The factor λk,k is chosen such that the two point function satisfies the following normal-

ization condition:

〈(Ok1,k1)†(t1)Ok2,k2(t2)〉 = N 2
k1

δk1k2 . (5.6)

where Nk is defined in (B.4). Nk is the appropriate normalization for the two point

functions extracted holographically. The normalization condition implies that

λ−2
k,k =

N−1
∑

N−k

(l + k)!

l!
=

1

(1 + k)

(

(N + k)!

(N − 1)!
− N !

(N − k − 1)!

)

N→∞→ Nkk + O(Nk−1). (5.7)

The corresponding integral representation of the operators is therefore (k 6= 1)

Ok,k(t) = Nkλk,k2
k
2

∫

dzdz∗zkÛ(z, z∗, t); (5.8)

=
N

π2
√

k

√
k − 1(k − 2)2

k
2 N− k

2

∫

dzdz∗zkÛ(z, z∗, t).

The expectation value of this operator in a generic state |Φ〉 is then given by

〈Ok,k(t)〉Φ =
N

π2
√

k

√
k − 1(k − 2)2

k
2 N− k

2

∫

dzdz∗zk〈Û(z, z∗, t)〉Φ. (5.9)

The integral may be rewritten using using (4.17), (4.20) as

〈Ok,k(t)〉Φ =
N2

π2
√

k

√
k − 1(k − 2)eikt

∫

d2weikφ|w|kρ, (5.10)

in exact agreement with the holographic result (3.58).

Consider the k = 1 operator. Here the distinction between U(N) and SU(N) becomes

important: the vanishing of the trace in the latter means that there is no dimension one

operator, O1,1. This constraint can be incorporated here by restricting to configurations

in which

〈O1,1〉 = 0 =

∫

d2wwρ, (5.11)

which is indeed the condition imposed on the holographic distribution.
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5.3 Other scalar chiral primaries

Now let us consider the remaining scalar chiral primary operators O∆k, which are not

maximally charged, ∆ > |k|. The action of such an operator on the conformal vacuum |Ω〉
or any other 1/2 BPS state |Φ〉 built from Schur polynomials creates a state which cannot

be described in terms of Schur polynomials. The reason is that the other scalar operators

contains not only the scalar fields (Z, Z̄) but also the remaining four N = 4 SYM scalar

fields. The latter are not contained in the Schur polynomials, and thence not in the free

fermion description.

Suppose however one wishes to compute one point functions of these scalar operators

in a state |Φ〉. To do so, following (4.4), one needs to know three point functions between

such an operator and two maximally charged operators. Consider the computation of such

a three point function in free field theory; at tree level the computation actually only

involves the fields (Z, Z̄). Take for example a three point function such as

〈Tr(Z̄)k(x)O2p,0(y)Tr(Z)k(z)〉, (5.12)

for which the single trace SO(2) × SO(4) singlet operator O2p,0 has the structure

O2p,0 = a1Tr
(

(ZZ̄)p + · · ·
)

+ a2Tr
(

(ZZ̄)p−2R2 + · · ·
)

+ · · · , (5.13)

where the ellipses within the trace denote cyclic permutations, (a1, a2, . . .) are constants

and R2 =
∑4

i=1(Xi)
2 denotes collectively the other scalars Xi of N = 4 SYM. Since the

latter have no propagators with the fields (Z, Z̄) and cannot be self-contracted, only the

first term contributes in the three point function (5.13).

Therefore, one would anticipate being able to implement the scalar operators with free

fermions such that one can compute such one point functions. One would not however

expect to be able to compute two point functions, or general higher point functions of such

operators, using the free fermion description.

5.3.1 Neutral operators

Suppose one implements the dimension two neutral operator as

O2,0 = N2λ2,0

∑

m

Ĉ†
mĈm(m − β). (5.14)

Then the normalization factor λ2,0 and the constant β should be fixed such that the one

point function of this operator vanishes in the conformal vacuum; the three point function

of the operator with charged operators gives the correct N = 4 results and the vev reduces

to the Coulomb branch result as the radius of the S3 is increased. Imposing the first

constraint, 〈O2,0〉Ω = 0, implies that

β = N−1
N−1
∑

m=0

m =
1

2
(N − 1). (5.15)

Note that this value for β implies that the operator O2,0 annihilates the conformal vacuum,

O2,0|Ω〉 = 0, and therefore the two point function for this operator also vanishes. This
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makes manifest the point made above, that one can only obtain the vevs of neutral operators

from the matrix model. The corresponding integral representation of the operator is

O2,0 = 2N2λ2,0

∫

dzdz∗
(

|z|2 − 1

4
N

)

Û(z, z∗, t) (5.16)

where subleading terms as N → ∞ are dropped. The normalization λ2,0 is fixed by taking

the flat space limit: only the leading order term is retained, and comparison with the

result (3.66) gives

λ2,0 =

√
2

N
√

3
. (5.17)

We have also checked explicitly that this result is consistent with N = 4 three point

functions, involving charged operators. Using (4.17), (4.20) one can rewrite the vev as

〈O2,0〉 =

√
2N2

√
3π2

∫

d2w

(

|w|2 − 1

2

)

ρ, (5.18)

in exact agreement with the holographic result (3.59).

Now let us apply the same techniques to obtain expressions for the vev of the dimension

four neutral operator. For the operator O4,0 one gets

O4,0 =
2N4√
5N2

∑

Ĉ†
mĈm

(

3m2

4
+ b1m + b2

)

. (5.19)

Here the overall normalization is again fixed, so that the operator in the integral represen-

tation gives the correct expression in the Coulomb branch limit. Imposing the vanishing

of the vev in the conformal vacuum implies that

2N3 + N2(4b1 − 3) + N(8b2 − 4b1 + 1) = 0. (5.20)

Calculating the three point function with single trace charged operators of dimension two

such that ŝ2 = N−1
2 O2,2 gives

〈ŝ†2(t)O4,0ŝ2(t
′)〉 =

2N4√
5N

λ2
2,2(6N

2 + 4Nb1 + · · ·) =
2N4

N
√

5
, (5.21)

where the ellipses denote terms which are subleading as N → ∞. Then solving these

equations to leading order in N gives

b1 = −N ; b2 =
1

4
N2. (5.22)

These values can be shown to also be consistent with other three point functions involving

different charged operators. In integral representation this implies that

O4,0 =
2N4√
5N2

∫

dzdz∗
(

3|z|4 − 2N |z|2 +
1

4
N2

)

Û(z, z∗, t), (5.23)

where again only leading terms as N → ∞ are retained, and using (4.17) this gives

〈O4,0〉 =

√
3N2

√
5π2

∫

d2w(3|w|4 − 4|w|2 + 1)ρ, (5.24)

which agrees with the holographic result (3.59).
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5.3.2 Charged operators

Now let us treat the charged operators in a similar fashion. For the dimension three

operator

O3,1 =
2N3

N3/2

∫

dzdz∗z(|z|2 + c3)Û (z, z∗, t), (5.25)

which implies in the fermion representation

O3,1 = N3
1√

2N3/2
eit

∑

m

(

(m + 2 + 2c3)(m + 1)1/2
)

Ĉ†
m+1Ĉm. (5.26)

Now we use the three point function (B.8) to fix the coefficient c3; to leading order in N

this gives

c3 = −1

2
N, (5.27)

and thus

〈O3,1〉 =
N2

π2
eit

∫

d2ww(|w|2 − 1)ρ. (5.28)

However the constraint (5.11) implies that the second term in (5.28) vanishes, and thus

that the holographic result (3.59) is reproduced.

For the dimension four operator

O4,2 =
8N4√
10N2

∫

dzdz∗z2(|z|2 + c4)Û(z, z∗, t), (5.29)

which implies in the fermion representation

O4,2 = e2it 2N4√
10N2

∑

m

(

(m + 3 + 2c4)
√

(m + 2)(m + 1)
)

Ĉ†
m+2Ĉm. (5.30)

Again we use a three point function (B.8) to fix the coefficient c4; to leading order in N

this gives c4 = −1
2N , and thus the vev is

〈O4,2〉 =
4
√

3N2

√
10π2

e2it

∫

d2ww2(|w|2 − 1)ρ, (5.31)

in agreement with (3.59).

Thus, to summarize, we have implemented all single trace operators of dimension ∆

and SO(2) charge k quadratically in fermions as

O∆,k = N− 1
2
∆N∆eikt

∞
∑

m=0

P∆,k(m)Ĉ†
m+kĈm, (5.32)

with P∆,k(m) fixed so as to give the correct normalization and three point functions of

N = 4 SYM. Up to dimension four, it was sufficient to use three point functions involving

only single trace operators, but for higher dimension operators one might also have to

use additional three point functions involving multi-trace operators. Rewriting the vevs of

these operators as integrals over the distribution gives the general form for the holographic

vevs (3.61) and explicit agreement for all operators up to dimension four and maximally

charged operators of all dimension.
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6. Correspondence between supergravity solutions and states

In this section we explore how much one can deduce about the dual state from a given

regular supergravity solution, using the information about the vevs of chiral primaries. We

have already argued that even the exact distribution function does not in general determine

the state uniquely, and in this section we will see how a given sharpened distribution

(which gives a regular supergravity solution) can correspond to a number of distinct exact

distributions.

We will also note that non-singular supergravity solutions which break the SO(2)

rotational symmetry are necessarily dual to infinite superpositions of Schur polynomials.

Superpositions of a small number of Schur polynomials typically give rise to distributions

which cannot be approximated by step functions and thus do not correspond to regular

geometries. Thus the natural field theory bases for half BPS states, which use R charge

eigenstates, are not the natural bases for describing regular bubbling geometries.

We illustrate this point by considering a disc distribution with a ripple deformation

of frequency n. Using the chiral primary vevs we argue that such a distribution is given

by a coherent superposition of single trace operators. This identification follows very

naturally from earlier discussion of quantum Hall liquids: area preserving deformations of

a disc droplet are naturally described by coherent superpositions of fermionic excitations,

or equivalently in terms of a collective chiral boson description.

6.1 Radially symmetric distributions

In this section we consider half BPS states associated with superpositions of Schur poly-

nomials of the same dimension. Such states are eigenstates of the dilatation and R charge,

so only SO(2) neutral operators can acquire expectation values. The corresponding distri-

butions therefore preserve the rotational symmetry in the plane.

A given Schur polynomial χn
{λ}(Z) corresponds according to (4.10) to a distribution

〈Û(z, z∗, t)〉n,λ =
N

∑

p=1

Φ∗
λp+N−p(z, z∗, t)Φλp+N−p(z, z∗, t); (6.1)

=
2

π
e−2|z|2

N
∑

p=1

(2|z|2)λp+N−p

(λp + N − p)!
.

Given such a distribution is radially symmetric, only the stress energy tensor along with

neutral operators acquire expectation values. The expectation value of the former is clearly

independent of λ, and depends only on n. One can now show that the vevs of neutral oper-

ators with dimensions 2k ≪ N also do not distinguish between different Schur polynomials,
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for N → ∞. First note that

∫

d2z|z|2k〈∆Û(z, z∗, t)〉n,λ = 2−k
N

∑

p=1

(

(λp + N + k − p)!

(λp + N − p)!
− (N + k − p)!

(N − p)!

)

= 2−k
N

∑

p=1

(N + k − p)!

(N − p)!
(ψ(N + k − p) − ψ(N − p))λp + · · ·

= 2−kNk−1kn + · · · (6.2)

where ∆Ûn,λ = (Ûn,λ − ÛΩ) and ψ(x) is the Digamma function and ellipses denote terms

which are subleading as N → ∞. Thus the leading term depends only on
∑N

p=1 λp = n,

and not the specific Schur polynomial. The vevs of neutral operators can be expressed in

terms of such integrals as

〈O2k,0〉n,λ =
N2k

Nk

k−1
∑

l=0

dl

∫

d2z|z|2(k−l)N l〈∆Û(z, z∗, t)〉n,λ, (6.3)

for certain coefficients dl. (In the previous sections we gave the dl explicitly for k = 1, 2.)

Using (6.2), one finds that

〈O2k,0〉n,λ =
N2kn

N
Ck, Ck =

k−1
∑

l=0

dl2
−(k−l)(k − l), (6.4)

regardless of the choice of λ. Note that this behavior concurs with the explicit result for

the vev in the state created by the single trace operator Tr(Zn), given in (B.6), and the

latter result determines that

Ck =

√
2k

2k−1
√

2k + 1
. (6.5)

Thus the vevs of neutral operators in an R-charge eigenstate are at leading order in N

independent of the specific choice of Schur polynomial superposition creating that state.

Expressed in the coordinates appropriate for comparing with supergravity, the density

distribution takes the form

ρn,λ =
1

π
e−N |w|2

N
∑

p=1

(N |w|2)λp+N−p

(λp + N − p)!
, (6.6)

and has the properties

∫

d2wρn,λ = 1;

∫

d2w|w|2(ρn,λ − ρΩ) =
n

N2
. (6.7)

The latter implies that the excess energy relative to the conformal vacuum is n, indepen-

dently of λ. This density function is such that 0 ≤ πρn,λ ≤ 1 everywhere; however, as

for the density function describing the conformal vacuum, (πρn,λ) does not take the values

{0, 1} everywhere, and therefore the corresponding supergravity solution constructed from

ρn,λ would be singular. Just as for the conformal vacuum, though, the density function can
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Figure 1: Sharpened distributions describing Schur polynomials of the same dimension n ≪ N

cannot be distinguished by the corresponding vevs at leading order in N .

be written as a sum of theta functions plus correction terms describing the smearing which

are subleading as N → ∞. Retaining only the former leads to a non-singular supergravity

solution.

For example, suppose one considers the Schur polynomial for which λ1 = n + 1 with

λp = 0 otherwise; this corresponds to the state Ĉ†
N+nĈN−1|Ω〉. The density function (6.6)

in this case consists of a smoothed disc of radius one, along with a second peak localized

around |w|2 = (1 + n+1
N ). Now suppose one sharpens distribution so as to get a regular

supergravity solution, consisting of a disc plus an annulus:

ρ =
1

π
: 0 ≤ |w|2 ≤

(

1 − 1

N

)

;
(

1 +
n

N

)

≤ |w|2 ≤
(

1 +
n + 1

N

)

,

ρ = 0 :

(

1 − 1

N

)

< |w|2 <
(

1 +
n

N

)

; |w|2 >

(

1 +
n + 1

N

)

.
(6.8)

The smearing of the disc and the annulus to obtain the exact density function is described

by correction terms which are subleading as N → ∞.

As a second example, consider the Schur polynomial for which λ1 = n1 and λ2 = n2 =

n + 1 − n1, corresponding to Ĉ†
N+n1−1Ĉ

†
N+n2−2ĈN−1ĈN−2|Ω〉. Assuming that n1 and n2

differ by a finite amount, the density function (6.6) consists of a smooth disc, along with

two localized peaks. (If n1 and n2 are comparable, these two peaks merge, to look like the

one.) One can then obtain a corresponding supergravity solution by taking the density

distribution to consist of a disk plus two annuli:

ρ =
1

π
: 0 ≤ |w|2 ≤

(

1 − 2

N

)

;

(

1 +
(n2 − 2)

N

)

≤ |w|2 ≤
(

1 +
(n2 − 1)

N

)

,

(

1 +
(n1 − 1)

N

)

≤ |w|2 ≤
(

1 +
n1

N

)

. (6.9)

Both configurations we have described have the same energy (n+1), and by the arguments

above also have the same one point functions at leading order in N .

More generally, for an arbitrary Schur polynomial one can obtain a corresponding

supergravity solution by sharpening the distribution into a set of annuli, as illustrated

in figure 1. However, there is clearly not a unique map from such a set of annuli to
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Figure 2: Distribution for a typical Schur polynomial; there is no distinct peak. The figure shows

N = 100, n = 30, with a random distribution of λp.

a given Schur polynomial: Schur polynomials which are very similar to each other, and

superpositions of similar Schur polynomials, give density distributions which can only be

distinguished at subleading order in N . That is, the associated sharpened supergravity

distributions, which consist only of annuli, can be the same. To give an example, consider

a specific superposition of Schur polynomials of the same dimension

|Φ〉 =
n

∑

k=0

akĈ
†
N+n−kĈ

†
N−1−k|Ω〉, (6.10)

with
∑n

k=0 |ak|2 = 1. When only one coefficient ak is non-zero this collapses to the case

discussed above of a single Schur polynomial, for which the sharpened distribution is a

disc plus annulus. However, many other superpositions, such as those for which one ak is

much greater than the rest, will give precisely the same sharpened distribution. Moreover,

a typical Schur polynomial for which 1 ≪ n ≪ N in which many of the λp are non-zero

and different can give rise to a distribution which does not approximate a disk plus annuli:

generically there are no strong peaks at |w| > 1, as illustrated in figure 2. By contrast a

Schur polynomial for which the λp are equal does give rise to a strong peak, see figure 3.

For more discussions on these issues, see [11, 37] along with the recent paper [38].

Note furthermore that a giant graviton, which is also a Schur polynomial of given

dimension, necessarily corresponds to a radially symmetric distribution and not a disc

with an excited droplet illustrated in figure 5, as suggested in some earlier papers. Indeed

the maximal giant graviton, which has dimension N and is a Schur polynomial for which

all λp = 1, corresponds to a distribution which approximates a disc with a hole in the

middle, as illustrated in figure 4.

In the above discussion we have focused on Schur polynomials with dimension less

than N . A Schur polynomial with dimension greater than or equal to N can never be

represented by a single trace component, since there is of course no single trace operator

with such a dimension. Indeed if one considers the two distributions (6.8) and (6.9) but
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Figure 3: Distribution for a Schur polynomial in which the λp are equal. The figure shows N = 120,

n = 30 with λp = 2 for p ≤ 15.

Figure 4: A maximal giant graviton corresponds to a disc with a small hole at the centre.

now with n ≥ N , one finds that the vevs for the dimension four neutral operators are

respectively

〈OS40〉 =

√
3N√
5π2

(2ñ + 3ñ2); 〈OS40〉 =

√
3N√
5π2

(2ñ + 3(ñ2 − 2ñ2ñ1)), (6.11)

where ñ = n/N , ñ1 = n1/N and ñ2 = n2/N with ñ = ñ1 + ñ2 ≥ 1. The leading order

terms as N → ∞ for (n1, n2) ≫ 1 have been retained. These vevs are indeed distinguishable

even as N → ∞; note that the vev for the single annulus is greater than that of the other

distribution. Of course, following the general discussion given earlier, this distinguishability

will still not be sufficient to determine the dual state |Φ〉 uniquely: the single trace operator

vevs cannot provide enough information. Moreover, again a typical Schur polynomial will

not give rise to a distribution with strong peaks which is well approximated by annuli.

Consider a disc plus annulus configuration with fixed energy n. For given n one might

think that the radius of the annulus |w|2 = 1 + β can be taken to be arbitrarily large

provided that its width is decreased accordingly. However, one has to take into the flux

quantization condition: as discussed in [5] one can integrate the five-form flux over a sphere

surrounding the annulus, and the flux must be quantized. This quantization requires that
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the total area of the annulus (and indeed of any isolated droplet) must be a multiple of

π/N . Thus the width of the annulus defined as δ = |w|2max − |w|2min is a multiple of 1/N .

The total energy of the configuration of the disc plus annulus, relative to the conformal

vacuum, is given by n = Nβ + 1 and therefore for given n one gets β = (n − 1)/N , as

in (6.8). This is the maximal radius for a given energy: multiple annuli or thicker annuli

necessarily have lower radii.

This same bound is also visible directly from the density distribution. First note that

the function e−χχα/α! for large α has support only around χ = α. Thus the distribu-

tion (6.1) extends to a maximum radius

|w|2max = 1 +
λ1 − 1

N
, (6.12)

which is maximal for the Schur polynomial in which λ1 = n and λi = 0 otherwise. This

implies an upper bound on the magnitudes of vevs of the scalar operators, for a given

energy.

6.2 Non symmetric distributions

A distribution which is not radially symmetric corresponds to a superposition of R-

eigenstates. The generic state |Φ〉 can be written in terms of Schur polynomials as

|Φ〉 =
∑

n,λ

an,λχn
{λ}|Ω〉 ≡

∑

n,λ

an,λ|n, {λ}〉. (6.13)

with the Schur polynomials being orthonormal, and normalization of the state implies
∑

n,λ |an,λ|2 = 1. Now consider an operator O∆,j of dimension ∆, R-charge j. The vev of

such an operator in this state is

〈O∆,j〉Φ =
∑

n,λ,λ′

a∗n+j,λ′an,λ〈(n + j), {λ′}|O∆,j |n, {λ}〉. (6.14)

The three point functions appearing in this sum are non-extremal, except when ∆ = j, i.e.

the operator is maximally charged. As discussed previously, the leading order contribution

to non-extremal correlators as N → ∞ is independent of the specific choices of Schur

polynomial. Thus, the leading order contributions to the vevs of non-maximally charged

operators can be computed using

|Φ〉 ≈
∑

n

ãn|n〉, (6.15)

where |n〉 is any state of R-charge n, and the coefficients ãn are such that

∑

{λ}
|an,λ|2 = |ãn|2. (6.16)

However, the vevs of the maximally charged operators do depend on the specific Schur

polynomials appearing in the state |Φ〉, because the corresponding three point functions
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Figure 5: A disc plus droplet corresponds to a superposition of Schur polynomials of all dimension.

are extremal. Thus these vevs can be used to distinguish between different distributions

with the same ãn, even at leading order in N . For example, consider the states

|Φ〉 = a0|Ω〉 + an,{λ}|n, λ〉, (6.17)

where |a0|2 + |an,{λ}|2 = 1. To leading order in N , the vevs of the energy, R-charge and

neutral operators are independent of the specific choice of {λ}. However, the vevs of the

maximally charged operators with dimension n clearly do distinguish them. Let us compare

the state created by the single trace operator, namely |n, λ〉 → On,n|Ω〉 where the single

trace operator is defined in (5.5), and that associated with the Schur polynomial for which

λ1 = n, namely |n, λ〉 → Ĉ†
N+n−1ĈN−1|Ω〉. Then the expectation values of the single trace

operator of charge −n are respectively

|Φ〉 = a0|Ω〉 + anOn,n|Ω〉 : 〈On,−n〉Φ = Nna∗0ane−int; (6.18)

|Φ〉 = a0|Ω〉 + anĈ†
N+n−1ĈN−1|Ω〉 : 〈On,−n〉Φ =

Nn√
n

a∗0ane−int,

which differ by a factor of
√

n.

We should note here, however, that such superpositions which involve only a small

number of Schur polynomials do not generically give rise to smooth supergravity solutions.

In the example just given, taking (a0, an) to be real, the corresponding distribution takes

the form

ρ(w,φ) = ρ(|w|) + ρ̃(|w|) cos(nφ), (6.19)

with the functions (ρ(|w|), ρ̃(|w|)) dependent on the specific Schur polynomial. In the case

that |n, λ〉 → Ĉ†
N+n−1ĈN−1|Ω〉 the functions are

πρ(|w|) = θ(1−N−1−|w|2)+|w|2(N−1)e−N |w|2
(

|a0|2
NN−1

(N − 1)!
+|an|2

NN+n−1

(N + n − 1)!
|w|2n

)

;

πρ̃(|w|) = a0an|w|2(N−1)+ne−N |w|2 NN+n/2−1

√

(N − 1)!(N + n − 1)!
. (6.20)

Regularity of the supergravity solution requires that πρ(w,φ) takes the values {0, 1} every-

where. This condition can however never satisfied by a function of the form (6.19), with
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ρ̃(|w|) non-zero. One can see this easily as follows. Suppose the function ρ(w,φ) satisfies

this condition at φ = 0, so that

πρ(w, 0) = ρ(|w|) + ρ̃(|w|) = {0, 1}, (6.21)

for ρ̃(|w|) ≥ 0. Then

πρ(w, δφ) − πρ(w, 0) = −1

2
πn2ρ̃(|w|)δφ2 + · · · (6.22)

Regularity would require that the right hand side takes only the values {−1, 0, 1} for all |w|
and δφ, but this is not possible given that δφ2 is a continuous function of δφ. Smoothing the

distribution so that πρ(w,φ) does take the values {0, 1} everywhere introduces additional

terms (with small coefficients) into the state |Φ〉, and such terms may not be distinguishable

at leading order in N .

Conversely, a droplet distribution which is not radially symmetric but which gives rise

to a regular supergravity solution is always associated with a superposition of an infinite

number of Schur polynomials. Such a distribution can be written in terms of step functions

whose arguments are the boundaries of the droplets:

θ(|w|2 − f(φ)); f(φ) = f0 + f̃(φ), (6.23)

where f0 is a zero mode whilst f̃(φ) has no zero mode and can be expanded in Fourier

modes. Now even when the droplet boundary f̃(φ) contains only one frequency n, the

distribution will contain all multiples of this frequency. One can see this by mode expanding

the distribution, using (4.31), or by computing the multipole moments of the distribution

as ∫

dφd|w|2|w|2leimφρ = (1 + l)−1

∫

dφeimφ(f0 + f̃(φ))1+l. (6.24)

The latter integral is clearly non-zero when the frequency m is contained in f̃(φ) or its

products, demonstrating that the distribution contains products of the frequencies con-

tained in f̃(φ). Therefore, in the case that the droplet boundary contains only frequency n

the corresponding state is a superposition of Schur polynomials of dimension kn involving

all k ≥ 0.

6.3 An example: a disc with a ripple

Consider a disc with a ripple such that the boundary of the distribution is at

|w|2 = 1 + α cos(nφ). (6.25)

By the arguments above, such a distribution corresponds to a state |Φ〉 which is a super-

position of Schur polynomials of dimension kn, namely

|Φ〉 =
∑

k,{λ}
ak,{λ}|kn; {λ}〉. (6.26)

In general, one will need to compute all one-point functions of all single and multitrace

operators in order to deduce the coefficients ak,{λ}. However, given that this distribution
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Figure 6: A disc with a ripple of frequency n corresponds to a superposition of Schur polynomials

whose dimensions are multiples of n. The actual figure has n = 8, α = 0.1.

is highly symmetric, with only one defining parameter, let us try to use the vevs of the

lowest dimension single trace operators to deduce the superposition. Evaluating (3.56) for

the distribution with boundary at (6.25), the energy and R-charge in this state are

E − Ec = J =
1

4
N2α2, (6.27)

whilst from (3.59)–(3.60) the vevs of the neutral operators are

〈OS20〉 =
N2

√
2

4
√

3π2
α2; 〈OS40〉 =

N2
√

3

2
√

5π2
α2, (6.28)

and from (3.58) the vevs of the maximally charged operators with dimension n are

〈OSn,±n〉 =
N2

2π2
√

n
(n − 2)

√
n − 1e∓2intα. (6.29)

First note that the energy and the vevs of neutral operators are reproduced by a superpo-

sition of the form (6.15) with

|Φ〉 = e−
N2α2

4n

∞
∑

k=0

(Nα)k

(2
√

n)k
√

k!
|kn〉. (6.30)

To compute the energy and the neutral vevs at leading order in N we may use any rep-

resentative orthonormal state |kn〉, using the result of (6.4). Thus the energy is given

by

〈E − Ec〉Φ = e−
N2α2

2n

∞
∑

k=1

(Nα)2k

22knkk!
(kn) =

1

4
N2α2. (6.31)

The vev of the dimension four operator can be computed using the result given in (B.6):

〈O40〉Φ = e−
N2α2

2n

∞
∑

k=0

(Nα)2k

22knkk!
〈O40〉kn (6.32)

=

√
12e−

N2α2

2n√
5π2

∞
∑

k=1

(Nα)2k

22knkk!
(kn) =

N2
√

3

2
√

5π2
α2.
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Now consider the vev of the maximally charged operator: as we have emphasized this vev is

sensitive to the specific Schur polynomials contained in the state |kn〉. Let the single trace

operator of dimension n be On,n = Nnŝn, where by construction ŝn|Ω〉 is orthonormal.

Now suppose that |kn〉 is the state created by products of this operator such that

|kn〉 =
1√
k!

(ŝn)k|Ω〉. (6.33)

The states |kn〉 are orthonormal to each other in the large N limit. The easiest way to check

this is to go back to SYM language where |kn〉 = 1√
k!

(

(TrZn)/
√

Nnn
)k

|Ω〉 and then use

standard large N counting. The leading contribution in 〈kn|kn〉 comes from disconnected

diagrams where each TrZn is contracted with a corresponding TrZ̄n.

Then by construction

〈n(k + 1)|ŝn|kn〉 =
√

k + 1, (6.34)

which implies that

〈OSn,±n〉Φ = Nne∓2inte−
N2α2

2n

∞
∑

k=0

(Nα)2k+1

22k+1nkk!
√

n(k + 1)
〈n(k + 1)|ŝn|kn〉 (6.35)

=
NnNα

2
√

n
e∓2int =

N2

2π2
√

n
(n − 2)

√
n − 1e∓2intα,

in exact agreement with the holographic result (6.29). By contrast, if |kn〉 were instead the

state created by the single trace operator Tr(Zkn), then using the appropriate single trace

operator three point functions one can show that the holographic result for the charged

operator vev would not be reproduced: the vev would be down by a factor of N .

Note that when α is infinitesimal the state |Φ〉 reduces to a perturbation of the con-

formal vacuum by the operator ŝn|Ω〉:

|Φ〉 → (1 +
Nα

2
√

n
ŝn)|Ω〉, (6.36)

in agreement with the identification of infinitesimal perturbations made in [9]. Thus the

disc with a ripple is consistent with being dual to a state created by coherent superpositions

of states created by powers of the single trace operators ŝn acting on |Ω〉. Indeed, the state

|Φ〉 can be written as a coherent state,

|Φ〉 = |δ) ≡ e−
1
2
δ2

∞
∑

k=0

δk

√
k!
|kn〉, (6.37)

for δ = Nα/2
√

n with |kn〉 the state containing k quanta of ŝn.

6.4 Ripplon deformations and the chiral boson description

The identification of the ripple deformed disc with a state built from a coherent super-

position of the operators ŝn follows naturally from earlier discussions of edge excitations
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in quantum Hall liquids, see for example [39, 40]. Consider a distribution consisting of a

single droplet, whose boundary can be parametrized as

|w|2 = 1 + X(φ), (6.38)

where X(φ) is an arbitrary function with no zero modes. This function X(φ) describes

area preserving deformations of the disc. Now so far we have used the fermion picture,

that is, the Schur polynomials, to describe excitations relative to the conformal vacuum.

This is a natural basis to describe droplets which are separated from the disc, but it is not

the natural basis for describing coherent ripplon deformations in the shape of the droplet.

Such ripplons can best be described by quantizing the chiral boson field X(φ); quantiz-

ing its Fourier mode expansion gives rise to a Hilbert space associated with bosonic creation

and annihilation operators. As discussed in [40], these operators can in turn be identified

with elements in the symmetric polynomial (or equivalently, the trace) basis. Thus edge

waves and deformations in the shape of the droplet are most naturally described within the

trace (chiral boson) description rather than the Schur polynomial (fermion) description.

This extends the identification made for the single frequency ripple discussed above to more

general ripples.

It is interesting to note that the algebra of area preserving diffeomorphisms of the

droplet is actually W∞. It emerges in both the fermionic and bosonic formulations as the

algebra of unitary transformations of physical states. It would be interesting to understand

the meaning and implications of W∞ for holography.

7. Discussion

In this paper we have discussed holography for bubbling solutions. Solutions that are

asymptotically AdSp × Sq contain an infinite amount of holographic data that can be

extracted by algebraic manipulations, namely the holographic 1-point functions that char-

acterize the vacuum of the dual QFT. This is the simplest information one can extract

from a given supergravity solution. Conversely, knowledge of the 1-point functions is in

principle sufficient in order to reconstruct bulk solutions from QFT data. Two-point and

higher-point functions can also in principle be extracted, but this requires solving at least

the linearized equations around the solution (for 2-point functions) whilst for n-point func-

tions one needs to solve the (n−1)-th order equations. Explicitly solving such equations

is an intractable problem, except for very symmetric solutions. Moreover, in the case of

interest vevs are protected, given the non-renormalization of 3-point functions of chiral

primaries at the conformal vacuum, whilst there are no such non-renormalization theo-

rems protecting generic two point functions, and corresponding four point functions in the

conformal vacuum.

In the first part of this paper we reviewed the holographic 1-point functions derived

in [4] for the stress energy tensor, the R-currents and all chiral primaries up to dimension

four for asymptotically AdS5×S5 solutions of IIB supergravity that involve the metric and

the 5-form. These results hold generally when the solution is dual to a state (rather than
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describing a deformation), i.e. they do not dependent on the amount of supersymmetry pre-

served by the solution or its bosonic isometries (except that the solution should be asymp-

totic to AdS5 × S5), and thus these 1-point functions can be used to extract holographic

data from any such solution. The 1-point functions are given in terms of the asymptotic

coefficients of the ten dimensional solution and are presented in (2.28), (2.34) (2.35). Note

that the expressions are non-linear in the asymptotic coefficients.

The next step was the evaluation of these holographic formulas on the LLM solutions.

The holographic 1-point functions are by construction diffeomorphism covariant, so the

asymptotic coefficients can be extracted in any coordinate system. A clever choice of

coordinates however can reduce the required labor significantly. Recall that the LLM

solution is determined by a harmonic function Φ in six dimensions with sources on a

2-plane. The asymptotic expansion around AdS5 × S5 can be efficiently performed by

writing Φ = Φo + ∆Φ, where Φo is the harmonic function that leads to AdS5 × S5, and

then expanding in ∆Φ. One still needs to convert these expansions into radial expansions.

This is done by first using flat coordinates on R6 so that the asymptotic expansion of

∆Φ takes a standard form and then transforming to the coordinates most natural for the

AdS5×S5 solution. This procedure minimizes the number of non-linear terms entering the

computation of the 1-point functions.

We obtained explicit expressions for the vevs in terms of integrals over the 2-plane defin-

ing the solution; these are given in (3.54)–(3.56)–(3.58)–(3.59)–(3.60). Note that in (3.58)

we give the vevs of all maximally charged operators, i.e. operators with dimension equal

to R-charge, despite the fact that the general analysis in the previous section was done

for operators up to dimension four. The ability to produce such a result is due to special

properties of the LLM solution combined with the previous Coulomb branch results of [2].

Given the large amount of supersymmetry preserved by the LLM solutions, one would

expect that these vevs should not renormalize and thus that they must be reproduced by

a weak coupling computation. Put differently, these vevs provide checks for the correct

identification of the dual theory.

The vevs satisfy a number of non-trivial consistency checks. Firstly, the vev of the

energy is proportional to the vev of the R-charge (up to the the Casimir energy of SYM

on S3) as is required by supersymmetry. Secondly, all vevs, except for the energy which

should become equal to the Casimir energy, should vanish for the theory at the conformal

vacuum and this is indeed the case for the vevs we derive. Thirdly, the LLM solutions in the

decompactification limit of S3 go over to SO(4) symmetric distributions of D3 branes, with

the sources on the 2-plane now describing the distribution of D3 branes. These solutions

are dual to N = 4 SYM on the Coulomb branch. The LLM vevs indeed correctly reduce

to the Coulomb branch vevs given in [2] in this limit.

Before proceeding we should make a comment about the mass of these spacetimes.6

Had the solutions been asymptotically flat, one would have obtained their mass from the

gtt component of the metric. In our case however the solution is asymptotically AdS5 ×S5

so such a prescription is in general not valid. There are two issues here. One is that the

6An earlier discussion about the mass of the LLM solutions can be found in [41].
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solution involves in a non-trivial fashion a compact part of the geometry and the other is

that the non-compact part is asymptotically AdS. For asymptotically AdS spacetimes the

issue of mass has been revisited and thoroughly analyzed in recent years [23 – 25, 44, 45]

resulting in holographic formulas which relate the mass to the asymptotics of the metric

and other matter fields.

Taking into account the compact part is also non-trivial since none of the existing

consistent truncation formulas from ten to five dimensions is directly applicable. One can

however reduce the solution to five dimensions without truncating, keeping all fields relevant

for the computation of the mass. This is essentially the method of KK holography [4] and

results in the rigorous formula for the holographic stress energy tensor given in (2.34). One

can then obtain the mass from the Ttt component, as usual.

The field theory dual to the LLM solutions is expected to be N = 4 SYM on R × S3

in a half supersymmetric state. A general way of analyzing this theory would be to carry

out path integral quantization. The requisite supersymmetry is preserved by quantizing

around 1/2 supersymmetric solutions of N = 4 SYM on R×S3. Examples of such solutions

were discussed in [42] and more recently in [43]. These solutions are time-dependent and

in correspondence with the Coulomb branch of N = 4 SYM on R(3,1). In particular, the

curvature coupling implies the scalar Z satisfies an equation of the form Ż ∼ iZ. This

implies that the R-symmetry current jµ ∼ TrZ̄
↔
∂µ Z and the operator O2,0 ∼ TrZ̄Z

are proportional to the each other when evaluated on these solutions (and similarly for

related higher dimension operators). This provides an additional consistency check for the

holographic vevs, which the vevs in (3.54)–(3.59) indeed satisfy.

Due to the extended supersymmetry one might expect that the exact values of the

vevs of 1/2 supersymmetric gauge invariant operators could be computed by a semiclassical

computation. This would provide a rigorous computation of the vevs from first principles.

Actually carrying out this computation is not so easy in practice, though, because of

subtleties associated with correctly treating the integration measure. The issue is the

following: for the computations of interest one will want to integrate out most of the

SYM fields, including the other four scalars Xi and off-diagonal degrees of freedom of the

complex matrix Z, leaving only an integral over the eigenvalues of this matrix. This in

turn involves correctly parametrizing the path integral measure as given in

Z =

∫

[dZdZ† ∏

i

dXi · · ·]eiSYM[Z,Z†,Xi,...], (7.1)

and then integrating out appropriately. Now for a general computation one does not expect

to be able to integrate out exactly all these degrees of freedom. Integrating first over the

S3 would lead to a complicated interacting multi-matrix model which will not in general

be solvable. However, the holographic computations for the vevs along with the fact that

we can reproduce them by the holomorphic matrix model, imply that at least for these

computations one can explicitly integrate out the other degrees of freedom. Demonstrating

this by a first principles computation would be useful as it would explain the regime of

validity and the limitations of the free fermion description. Moreover, one may in this way
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show how certain computations can be carried out in multi-matrix models, even when they

are not exactly solvable.

In the absence of a rigorous derivation of the free fermion description from first prin-

ciples, we proceeded by using it as a working assumption. On symmetry grounds the state

that any given bubbling solution is dual to is a superposition of states obtained from the

conformal vacuum by the action of a 1/2 BPS operator. The question is then whether one

can uniquely determine the precise superposition from the data encoded in the solution.

Using the identification of the coloring of the 2-plane with the phase space distribution

of the free fermions we show that this information alone does not completely determine

the state in the large N limit. It does determine it enough however so that the vevs of

all single trace 1/2 BPS operators in that state are uniquely determined. This is precisely

the information encoded holographically in the asymptotics of the solution. The missing

information is related to vevs of multi-trace operators.

A general single trace 1/2 BPS operator depends on fields other than the complex Z

field. This implies that these operators cannot not in general be implemented with free

fermions. Nevertheless, we showed that for the purpose of the computation of the vevs

and to leading order in N such an implementation is possible and all such operators are

expressed in terms of bilinears of fermion creation and annihilation operators. Using these

expressions we show that all vevs computed holographically agree exactly with the field

theory computation in the large N limit for any distribution.

To illustrate our discussion we analyzed a number of examples. In accordance with our

general discussion, we showed that all vevs associated with any symmetric distributions

are degenerate to leading order N . For non-symmetric distributions, the vevs of charged

operators (which by symmetry considerations are zero in symmetric distributions) can

(partly) distinguish between different states. However, an infinite superposition of states

of definite R-charges is required to obtain a regular geometry. We also analyzed in detail the

case of the distribution being a ripple on a disc. This case has been analyzed previously for

an infinitesimal ripple in [9]. We showed here that a finite ripple corresponds to a coherent

state of single trace operators.

We should also comment on the striking parallels between this system and the 2-

charge D1-D5 fuzzball solutions. Both systems can be characterized by a set of curves:

in the LLM case these are curves in R2 describing the droplet boundaries, whilst in the

D1-D5 case these are curves in an auxiliary space describing the supertube shape and its

internal excitations. The holographic analysis for this system has recently been done in [46].

In both cases, only when the curves are circular and preserve rotational symmetry do the

geometries correspond to vacua built from a single operator (in the R-charge basis). Regular

geometries in which the rotational symmetry is broken correspond to infinite superpositions

of states in the R-charge basis, with the coefficients of the superpositions related to the

Fourier expansions of the curves. Thus the natural bases in the dual field theory, which

are labeled by their R charges, are not the natural bases for regular geometries.

It would be interesting to use the holographic anatomy techniques discussed in this

paper to analyze 1/4 and 1/8 BPS bubbling solutions [34]. One would expect that these

include both geometries dual to states and those dual to deformations. A holographic

– 48 –



J
H
E
P
0
9
(
2
0
0
7
)
0
1
9

analysis should determine how the boundary conditions which ensure regularity in the in-

terior of these geometries are related to the vevs/deformations in the dual theory. More

generally one may hope that combining supersymmetric classification techniques with holo-

graphic anatomy might lead to more efficient holographic engineering of geometries dual

to supersymmetric field theory states and deformations.
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A. Properties of spherical harmonics

The defining equations for the spherical harmonics are

¤yY
I1 = ΛI1Y I1 , ΛI1 = −k(k + 4), k = 0, 1, 2, . . . (A.1)

¤yY
I5
a = ΛI5Y I5

a , ΛI5 = −(k2 + 4k − 1), k = 1, 2, . . .

¤yY
I14
(ab) = ΛI14Y I14

(ab), ΛI14 = −(k2 + 4k − 2), k = 2, 3, . . .

¤yY
I10
[ab] ≡ ΛI10Y I10

[ab] , ΛI10 = −(k2 + 4k − 2), k = 1, 2, . . .

DaY I5
a = DaY I14

(ab) = DaY I10
[ab] = 0.

The overall normalization is chosen so that the harmonics are normalized as
∫

Y I1Y I2 = π3z(k)δI1I2, z(k) =
1

2k−1(k + 1)(k + 2)
(A.2)

The triple overlap between spherical harmonics is defined as
∫

Y I1Y I2Y I3 = π3aI1I2I3 . (A.3)

Recall that the scalar harmonics can be represented as

Y I1 = CI1
i1···ikxi1 · · · xik (A.4)

where xin are Cartesian coordinates on S5 and CI
i1···ik is a totally symmetric traceless rank

k tensor of SO(6). The normalization in (A.2) corresponds to delta function normalization

for the CI ’s, i.e.

〈CI1CI2〉 ≡ CI1
i1···ikCI2i1···ik = δI1I2 . (A.5)

Note that

aI1I2I3 =
1

(1
2Σ + 2)!2

1
2
(Σ−2)

k1!k2!k3!

α1!α2!α3!
〈CI1CI2CI3〉. (A.6)
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where Σ = k1 + k2 + k3, α1=
1
2 (k2 + k3 − k1) etc. Useful identities for the scalar harmonics

include

DaD(aDb)Y
I = 4

(

1 +
ΛI

5

)

DaY
I ; (A.7)

¤yD(aDb)Y
I = (10 + ΛI)D(aDb)Y

I ;

¤yDaY
I = (ΛI + 4)DaY

I .

Vector harmonics are normalized so that
∫

Y I1
a Y I2a = z(k)δI1I2 , (A.8)

where z(k) is as given in (A.2). We introduce the following coordinates on S5

ds2 = dθ2 + cos2 θdΩ2
3 + sin2 θdφ2. (A.9)

The differential equation (A.1) for the scalar harmonics is separable. Imposing SO(4)

symmetry implies that the spherical harmonics depend only on θ and φ. The general

solution can then be expressed in terms of a hypergeometric functions,

Y (k,m)(θ, φ) = c(n,m)y
k
m(θ)eimφ (A.10)

where c(n,m) is a normalization constant and the function yk
m(θ) is given by

yk
m(x) = x|m|

1F2

(

− 1

2
(k − |m|), 2 +

1

2
(k + |m|), 1 + |m|;x2

)

(A.11)

with x = sin θ (there are also a second solution with leading behavior x−|m| but this

solution does not reduces to a finite polynomial for any choice of the quantum numbers).

The hypergeometric function reduces to a finite polynomial when either the first or second

argument is zero or a negative integer. This leads to the following cases

(k = 2l, m = 2n), (k = 2l + 1, m = 2n + 1) n ∈ [−l, l], l ∈ Z+ (A.12)

with

y2l
2n(x) = x2|n|

1F2(−l + |n|, 2 + l + |n|, 1 + 2|n|;x2) (A.13)

y2l+1
2n+1(x) = x|2n+1|

1F2(−l + |n|, 3 + l + |n|, 2 + 2|n|;x2)

The harmonics that are also SO(2) symmetric are given by

Y (2l,0)(θ, φ) =
(−)l

2l
√

2l + 1

(

l
∑

m=0

(−)m

(

l

m

)(

l + m + 1

l + 1

)

(sin θ)2m

)

. (A.14)

The lowest harmonics are therefore

Y (2,0) =
1

2
√

3
(3 sin2 θ − 1), (A.15)

Y (4,0) =
1

4
√

5
(10 sin4 θ − 8 sin2 θ + 1),
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We will also need the following normalized charged scalar harmonics

Y (k,±k) =
1

2k/2
sink θe±ikφ; (A.16)

Y (3,±1) =

√
3

4
sin θ(2 sin2 θ − 1)e±iφ; (A.17)

Y (4,±2) =
1

2
√

10
sin2 θ(5 sin2 θ − 3)e±2iφ; (A.18)

Note that the triple overlap between charged and neutral harmonics is given by

〈C(k,−k)C(k,k)C(2p,0)〉 =
1

2p−1
√

2p + 1
, (A.19)

where C(p,q) denotes the symmetric tensor corresponding to the degree p, SO(2) charge q

spherical harmonic. The relevant vector harmonics are those with only components along

φ:

Y 1 =
1√
2

sin2 θdφ; (A.20)

Y 3 =

√
3

2
sin2 θ(2 sin2 θ − 1)dφ. (A.21)

B. Scalar chiral primaries

The single trace scalar chiral primary operators of dimension k are defined as

OSkI =
Nk

Nk/2
√

k
CI

i1···ikTr(Xmi1 · · ·Xmik ) (B.1)

where the properties of the degree k symmetric traceless tensors CI
I1···ik are given in ap-

pendix A. The operators are normalized such that

〈OSk1I1 (x)OSk2I2 (y)〉 = N 2
k1

δk1k2
δI1I2

|x − y|2k1
, (B.2)

where the scalar fields Xm are normalized such that

〈Xm
a (x)Xn

b (y)〉 =
δabδ

mn

|x − y|2 , (B.3)

where (a, b) are color indices. The appropriate normalization of the dimension k chiral

primaries to match with supergravity is

N 2
k =

N2

π4
(k − 1)(k − 2)2, (B.4)

for k 6= 2 with N 2
2 = N2/π4.

The planar three point function for such scalar chiral primaries is given by

〈OSk1I1 (x)OSk2I2 (y)OSk3I3 (z)〉 =
NI1NI2NI3

N

√
k1k2k3〈CI1CI2CI3〉

|x − y|2α3 |y − z|2α1 |x − z|2α2
. (B.5)
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Here 2α3 = k1 + k2 − k3 and (α1, α2) are defined analogously. The triple overlap of the

symmetric traceless tensors is denoted 〈CI1CI2CI3〉; recall that these tensors are orthonor-

mal (A.5).

Now let us consider the specific case of three point functions between one neutral

(SO(4)×SO(2) singlet) operator O2k,0 with dimension 2k and two conjugate SO(2) charged

operators On,n. The corresponding spherical harmonics are given in (A.14) and (A.16)

respectively, with the triple overlap being given in (A.19). The three point function implies

that the vev of the neutral operator in the (unit normalized) state created by On,n is

〈O2k,0〉 = N2k
n
√

2k

2k−1N
√

2k + 1
, (B.6)

Therefore the vevs of the neutral operators in these states are given by

〈O2,0〉n =

√
2n

π2
√

3
; 〈O2k,0〉n =

n

π2

(k − 1)

2k−2

√

2k(2k − 1)

2k + 1
. (B.7)

We will make use of several other three point functions, involving two maximally charged

operators:

〈O3,−3O3,1O2,2〉 =
N3

N
3
√

2〈C(3,−3)C(3,1)C(2,2)〉 =
√

3
N3

N
; (B.8)

〈O4,−4O4,2O2,2〉 =
N4

N
4
√

2〈C(4,−4)C(4,2)C(2,2)〉 = 4
N4√
5N

,

where C(p,q) denotes the symmetric tensor corresponding to the degree p, SO(2) charge q

spherical harmonic.

C. Large N behavior of three point functions

To compute vevs of single trace chiral primary operators in generic half BPS states we use

the corresponding three point functions. To determine the dominant effects in the large N

limit we thus need to know the N dependence of correlators of the form

CσI
n
CσJ

m
〈(Tr(σI

nZ))∗OATr(σJ
mZ)〉 (C.1)

where OA is a single trace chiral primary, σI
n denotes a conjugacy class of Sn and the

normalization factors CσI
n

are such that the operators are orthonormal in the large N

limit:

CσI
n
CσJ

m
〈(Tr(σI

nZ))∗Tr(σJ
mZ)〉 = δnmδIJ + O(1/N). (C.2)

Using the propagators given in (B.3) one finds that C2
σI

n
∼ 1/Nn; note that throughout

this section we will suppress factors of order one. It is convenient to introduce the notation

Oσ[m]
n =

1

Nn/2

∏

i

Tr(Zni);
∑

i

ni = n;
∑

i

1 = m, (C.3)

for an operator of dimension n involving m traces with a permutation labeled by σ[m].

As discussed in [36] there are two distinct cases of correlators to consider, the extremal
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correlators in which the dimension of the conjugate operator is equal to the sum of the

dimensions of the other operators and non-extremal correlators.

Let us consider first non-extremal correlators, focusing on the case where OA is an

SO(2) neutral operator, namely it is an operator O2p,0 of dimension 2p such that

O2p,0 =
1

Np
Tr(Z̄pZp + · · ·), (C.4)

where the ellipses denote cyclic permutations. Now charge conservation implies that the

correlator

〈(Oσ[m1]
n1

)†O2p,0(Oσ[m2]
n2

)〉 (C.5)

is only non-zero when n1 = n2. The N dependence varies according to the specific choices

of (σ[m1], σ[m2]). As discussed in [36], for a generic choice the correlator will have the same

N scaling as the related (m1 + m2 + 1)-point correlator of single trace operators, namely

as 1/Nm1+m2−1; thus for single trace operators the scaling is 1/N . Recall that an n-point

correlator of single trace operators behaves as

〈Ok1Ok2 · · · Okn〉 ∼ 1

Nn−2
, n ≥ 2. (C.6)

However, for specific choices of (σ[m1], σ[m2]) the N scaling can be enhanced, because

there are disconnected components to the diagrams. In particular, large N counting gives

〈(Oσ[m]
n )†O2p,0(Oσ[m]

n )〉 ∼ 1

N
, (C.7)

for any m, whilst for σ[m1] 6= σ[m2] one always finds a subleading N dependence, with the

3-point function being at most of order

〈(Oσ[m1]
n )†O2p,0(Oσ[m2]

n )〉 ∼ 1

N2
. (C.8)

(This result for m1 = 1 was given in [36].) Thus vevs of neutral operators are thus domi-

nated by diagonal three point functions of the type (C.7). For the vevs of non-maximally

charged operators, the relevant correlators are also non-extremal; the leading terms scale

as 1/N and arise from single trace correlators and specific multi-trace correlators. We will

not however need detailed results for the latter.

Now let us turn to the extremal correlators in which OA is a maximally charged single

trace operator. Again the correlator involving single trace operators behaves as 1/N , but

in this case correlators involving multi trace operators can dominate, since they can grow

as 1. In particular,

〈(Oσ[m+1]
n+k )†Ok,k(Oσ[m+1]

n )〉 ∼ 1, Oσ[m+1]
n+k = Ok,k(Oσ[m]

n ). (C.9)

Note that analogous results are obtained in the Schur polynomial basis; see [6] for related

discussions.
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D. Killing spinors for LLM solutions

We discuss in this appendix the computation of the Killing spinors of the LLM solutions.

This computation was carried out in appendix A of [5] but only half of Killing spinors

were correctly identified, even though the projection operators were given correctly, and

furthermore the spacetime dependence is not given correctly. These corrections do not

affect the final answer for the supergravity solution (although some intermediate steps in

the derivation are affected). They may have a real effect however in similar computations for

less supersymmetric solutions. Furthermore the correct Killing spinors may be needed for

other purposes, for example for analyzing supersymmetric probe branes in this background.

We use the notation of [5] and choose the same basis of gamma matrices

Γµ = γµ ⊗ 1 ⊗ 1 ⊗ 1, Γa = γ5 ⊗ σa ⊗ 1 ⊗ σ̂1, Γã = γ5 ⊗ 1 ⊗ σ̃a ⊗ σ̂2, (D.1)

where σa, σ̃a, σ̂a are the Pauli matrices.

The ten dimensional spinor is decomposed as

η = ǫa ⊗ χa ⊗ χ̃a (D.2)

where χa, χ̃a are geometric Killing spinors of S3, i.e. they obey

∇cχa = a
i

2
γcχa, a = ±1, (D.3)

and a similar equation for χ̃a, where ∇c is the standard connection on a unit 3-sphere. We

normalize these spinors as χ†
aχa = χ̃†

aχ̃a = 1. The fact that the spinors are correlated as

in (D.2) follows from the analysis in [5].

The Killing spinor equation then reduces to [5]

(iae−
1
2
(H+G)γ5σ̂1 +

1

2
γµ∂µ(H + G))ǫ + 2Mǫ = 0, (D.4)

(iae−
1
2
(H−G)γ5σ̂2 +

1

2
γµ∂µ(H − G))ǫ − 2Mǫ = 0, (D.5)

∇µǫ + Mγµǫ = 0 (D.6)

where

M = −1

4
e−

3
2
(H+G)γµνFµνγ5σ̂1 (D.7)

Processing these equations one finds that the spinor ǫa should satisfy the following equa-

tions [5]

P−
a ǫa = R+

a ǫa = 0, (D.8)

where we introduce the commuting projection operators

P±
a =

1

2

(

1 ± (ie−Gγ5 + a
√

1 + e−2GΓ3σ̂1)
)

, R±
a =

1

2
(1 ± iaΓ1Γ2) (D.9)

satisfying

(P±
a )2 = P±

a , P+
a P−

a = 0, (R±
a )2 = R±

a , R+
a R−

a = 0 [P±
a , R±

a ] = 0 (D.10)
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Each of this projection cuts the number of spinors by 1/2, so we have a total of 8 Killing

spinors for a = +1 and 8 Killing spinors for a = −1. The most general solution of (D.8) is

ǫa = R−
a P+

a ǫ̃a (D.11)

where ǫ̃a are (at this point) unconstrained spinors.

In [5] the following solution of (D.8) was given,

ǫ = eiδγ5Γ3σ̂1
ǫ1, Γ3σ̂1ǫ1 = aǫ1, sinh 2δ = ae−G (D.12)

These are in fact only half of the Killing spinors in (D.11). To see this introduce a new

projector,

S±
a =

1

2
(1 ± aΓ3σ̂1), (S±

a )2 = S±
a , S+

a S−
a = 0, (D.13)

and decompose ǫ̃a as

ǫ̃a = ǫ̃+
a + ǫ̃−a , S±

a ǫ̃±a = ǫ̃±a , S±
a ǫ̃∓a = 0 (D.14)

A short computation yields,

P+
a ǫ̃+

a = cosh δeiδγ5Γ3σ̂1
ǫ̃+
a (D.15)

which is the spinor in (D.12). Upon multiplication by R−
a one obtains half of the Killing

spinors in (D.11), namely we miss the ones based on ǫ̃−a .

To specify the Killing spinor we need to specify ǫ̃a. To this end we consider the fermion

bilinear f2 = iǭσ̂2ǫ. It was shown in [5] that f2 equals

f2 = e
1
2
(H+G) (D.16)

Inserting the spinors in (D.11) and defining

ǫ̃±a = c±e±a (D.17)

we find that (D.16) implies

c± =
e

1
4
(H+G)

√√
1 + e−2G ± 1

(D.18)

and

iēaσ̂2R
−
a ea = 2 (D.19)

where

ea = e+
a + iγ5e

−
a , (D.20)

The Killing spinor becomes

ǫa =
1√
2
e

1
4
(H+G)R−

a

(

(cosh δ + iaγ5 sinh δ)e+
a + (− sinh δ + iaγ5 cosh δ)e−a

)

=
1√
2
e

1
4
(H+G)R−

a

(

eiδγ5Γ3σ̂1
e+
a + iaγ5e

−iδγ5Γ3σ̂1
e−a

)

(D.21)
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From these spinors one can construct appropriate fermion bilinears and determine the

supergravity solution as in [5]; the supergravity solution is exactly as given in [5]. Note

that the functions (G,H) are such that

eH = y; z =
1

2
tanh G, (D.22)

where z is the defining function of the supergravity solution.

There is however a further issue in constructing the actual Killing spinors: the spinors

by construction satisfy (D.4) and (D.5) since it is these equations which were processed.

One still needs to check explicitly that all components of (D.6) are satisfied. Now the

spinors as given in [5] do not depend at all on the time coordinate t. This is however

inconsistent with the t component of (D.6); one can show that

∇tǫa + Mγtǫa 6= 0 (D.23)

for constant (e+
a , e−a ). Another way to see that the Killing spinor solution is not quite

correct is by considering the limiting case of AdS5×S5. The known explicit expressions for

the Killing spinors of AdS5 ×S5 do depend explicitly on the time coordinate; this remains

true for the specific combinations of spinors which form the set of sixteen discussed above.

The resolution of this issue is straightforward: (e+
a , e−a ) are not constant, but must

contain suitable t (and indeed also φ) dependent phase factors so that (D.6) is satisfied.

These phase factors drop out of (D.19) and all other fermion bilinears used to construct

the supergravity solution.
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